МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ БЕЛАРУСЬ ГОСУДАРСТВЕННОЕ ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЭЛЕКТРОЭНЕР-ГЕТИКИ «БЕЛЭНЕРГО»

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «МИНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИ-ЧЕСКИЙ КОЛЛЕДЖ»

> УТВЕРЖДЕНО Директор УО МГЭК « 24 » С.М Алексеев « 2019 г.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ И ВЫПОЛНЕНИЮ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ ДЛЯ УЧАЩИХСЯ ЗАОЧНОГО ОТДЕЛЕНИЯ ПО ДИСЦИПЛИНЕ ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ

2-4301 01 «Электрические станции»

Автор: А.В. Рылач, преподаватель УО "Минский государственный энергетический колледж".

Методические рекомендации составлены на основании учебной программы по дисциплине «Электрические измерения», утвержденной директором «Минского государственного энергетического колледжа» от 10 апреля 2013 года.

Программа обсуждена и рекомендована к утверждению цикловой комиссией электротехнических дисциплин УО «Минский государственный энергетический колледж».

Ответственный за выпуск - методист УО «Минский государственный энергетический колледж» _______О.В. Какорина.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программой предмета "Электрические измерения" предусматриваются изучение учащимися основ метрологии, способов, средств измерений электрических, магнитных и неэлектрических величин.

Базой для изучения предмета служат знания, полученные по таким предметам, как физика, математика, теоретические основы электротехники, электрические материалы. В свою очередь знания по данному предмету необходимые для изучения предметов "Промышленная электроника и микроэлектроника", "Основы автоматизации производства", "ЭВМ и микропроцессорная техника", "Электрические машины и аппараты", "Основы электропроводов", предметов по специальностям.

В результате изучения предмета учащиеся должны знать:

- основы метрологии;
- устройство, принцип действия, характеристики и область применения электроизмерительных приборов;
 - методику определения погрешностей измерений и средства измерений;
 - меры основных электрических величин;
 - способы измерения электрических, магнитных и неэлектрических величин;
 - условные обозначения на шкалах приборов;
 - меры безопасности при проведении электрических измерений;
 - перспективы развития электроизмерительной техники; должны знать:
- определять значения измеряемой величины и показатели точности измерений;
- пользоваться электроизмерительными приборами, инструментами с учётом требований безопасности труда;
 - собирать схемы включения электроизмерительных приборов;
 - пользоваться каталогами, справочной литературой.

При изложении программного материала необходимо соблюдать единство терминологии и обозначений в соответствии с действующими стандартами, Международной системой единиц измерений. Следует также обращать внимание учащихся на вопросы безопасности и гигиены труда.

Преподаватель должен систематически пополнять программный материал новейшими сведениями о достижениях и перспективах развития электроизмерительной техники с учетом специфики отрасли.

Для закрепления теоретических знаний и приобретение необходимых умений программой предусматривается проведение лабораторных работ после соответствующих тем. Перед выполнением учащихся необходимо проинструктировать по безопасности труда и сделать соответствующую запись об этом в специальном журнале.

Для глубокого усвоения учащимися учебного материала нужно широко применять технические средства обучения, использовать образцы измерительных приборов, действующей модели, стенды, другие наглядные пособия. С целью приобретения и закрепления учащимися практических навыков проведения расчетов при выполнении домашних заданий рекомендуется использовать ЭВМ и микропроцессорной техники.

ЛИТЕРАТУРА

Основная:

Панфилов, В.А. Электрические измерения: Учебник для студ. сред. проф. образования / В.А. Панфилов. - М.: ИЦ Академия, 2013. - 288 с.

Завистовский, В.Э. Допуски, посадки и технические измерения: Учебное пособие / В.Э. Завистовский, С.Э. Завистовский. - Мн.: РИПО, 2012. - 277 с.

Зайцев, С.А. Допуски и технические измерения: Учебник для нач. проф. образования / С.А. Зайцев, А.Д. Куранов, А.Н. Толстов. - М.: ИЦ Академия, 2012. - 304 с.

Клименков, С.С. Нормирование точности и технические измерения в машиностроении: Учебник / С.С. Клименков. - М.: НИЦ ИНФРА-М, Нов. знание, 2013. - 248 с.

Хромоин, П.К. Электротехнические измерения: Учебное пособие / П.К. Хромоин. - М.: Форум, 2013. - 288 с.

Хрусталева, З.А. Электротехнические измерения. Задачи и упражнения: Учебное пособие / З.А. Хрусталева. - М.: КноРус, 2013. - 250 с.

Хрусталева, З.А. Электротехнические измерения.: Учебник / З.А. Хрусталева. - М.: КноРус, 2012. - 208 с.

Хрусталева, З.А. Электротехнические измерения: Практикум: Учебное пособие / З.А. Хрусталева. - М.: КноРус, 2013. - 240 с.

Шишмарев, В.Ю. Технические измерения и приборы: Учебник для студентов учреждений высшего профессионального образования / В.Ю. Шишмарев. - М.: ИЦ Академия, 2012. - 384 с.

Шишмарев, В.Ю. Электротехнические измерения: Учебник для студентов учреждений среднего проф. образования / В.Ю. Шишмарев. - М.: ИЦ Академия, 2013. - 304 с.

Дополнительная:

Электрические измерения, Попов В.С., М 1974г.

Электрические измерения под редакцией Фремке А.В., Душина Е.Н., Л. 1980г.

Приборы и методы измерения электрических величин, Атамалян Э.Т., М1989г.

Основы метрологии. Бурду Г.Б., Марков Б.Н.,М1985г,

Электрорадиоизмерения. Елизаров А.С.,М 1986г.

Электрорадиоизмерения. Кушнир Ф.В., Л 1983г.

СОДЕРЖАНИЕ ПРЕДМЕТА

ВВЕДЕНИЕ

Задачи и содержание предмета, связь его с другими предметами. Роль измерений в современной науке и технике. Основные этапы развития измерительной техники. Достижения приборостроения и основные направления его дальнейшего развития. [1, с. 5-11, 2, с. 4-8]

РАЗДЕЛ 1. ОСНОВЫ МЕТРОЛОГИИ

Тема 1.1. Основные понятия

Определения метрологии как науки. Измерения и средства измерений. Мера, измерительный прибор, измерительный преобразователь, измерительная установка, измерительная система.

Система единиц измерения. Эталонная, образцовый и рабочие средства измерений.

Метрологическое обеспечение в Республике Беларусь. [1, с. 12-14, §§ 2.1-2.3; 2, §§ 1.1.-1.3, 2.1-2.4]

- 1. Каково значение электрических измерений в эксплуатации электрооборудования?
- 2. Каковы достижения приборостроения и электроизмерительные техники в РБ и зарубежом?
 - 3. Что понимается под измерением?
 - 4. Что изучает метрология?
 - 5. Что понимается под средством электрических измерений?
 - 6. Что понимается под меры?
 - 7. Приведите классификацию мер.
 - 8. Дайте определение эталона.
 - 9. Какое подразделение эталонов Вам известно?
 - 10. Каковы различия и область использования образцовых и рабочих мер?
- 11. Перечислите меры единиц электрических величин и дайте их краткую характеристику.
 - 12. Назовите эталоны единиц электрических величин.
- 13. Назовите допускаемые температуры при работе с рабочими и образцовыми мерами.
- 14. С какой целью катушки сопротивления снабжаются двумя парами зажимов?
- 15. Почему измерительные резисторы изготавливаются из манганиновый проволоки или ленты?
 - 16. Какие диэлектрики используются в образцовых конденсаторах?
 - 17. Где хранятся эталоны в РБ?

Тема 1.2 Общие сведения об измерениях

Виды измерений: прямые, косвенные совокупные. Методы измерений: непосредственной оценки, сравнения с мерой, противопоставления, дифференциальный, 0, замещение, совпадение. Классификация средств измерений, их характеристика. Классификация измерительных приборов: по обобщенным признакам; по физическим явлениям; по характеру и виду измеряемых величин; по виду выдаваемой информации; по схеме преобразования; по способу выдачи измерительной информации; по характеру установки на месте, степени защищённости. [1, с. 14-16; 2, с.15,§ 1.4]

Вопросы для самопроверки

- 1. Дайте определение прямых и косвенных измерений. Приведите примеры этих измерений.
- 2. Приведите квалификацию методов измерений и дайте их краткую характеристику.
- 3. Приведите классификацию измерительных приборов по признакам и приведите примеры.

Тема 1.3. Погрешности измерений

Классификация погрешностей измерений: абсолютная, относительная, основная, дополнительная, аддитивная, мультипликационный, Методическая, Инструментальная, статическая, динамическая.

Погрешности средств измерений. Диапазон измерений, чувствительность, порог реагирования, вариация показаний, быстродействие, время установления показаний, потребляемая мощность, надежность.

Классы точности приборов. [1, §§ 1.2-1.4; 2, §§ 1.5-1.6]

- 1. Каковы причины появления погрешностей при измерении?
- 2. Приведите классификацию погрешностей измерений.
- 3. Приведите классификацию погрешностей средств измерений.
- 4. Как определяется абсолютная, относительная и приведенная погрешность?
- 5. В чём состоят погрешности статические и динамические?
- 6. Что понимается под основной и дополнительной погрешностью?
- 7. Чем отличаются аддитивные погрешности от мультипликационных?
- 8. Перечислите классы точности приборов по действующему стандарту. Что означает цифра класса точности большинства стрелочных приборов?
- 9. Что следует отнести к общим характеристикам электроизмерительных приборов?

Тема 1.4. Обработка результатов измерения

Оценка погрешности измерения по заданным метрологическим характеристикам средств измерений. Общие положения обработки и представления результатов измерений.[1, с. 17-24; 2, § 1.7]

Вопросы для самопроверки

- 1. Чем обусловлены систематические и случайные погрешности измерений?
- 2. Как производится обработка результатов измерений при прямых равноточных измерениях?
 - 3. Каким образом записываются результаты измерений?
 - 4. От чего зависит погрешность результатов косвенных измерений?

РАЗДЕЛ 2. ЭЛЕКТРОМЕХАНИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБО-РЫ

Тема 2.1. Общие сведения об электромеханических приборах

Структурная схема, узлы и элементы аналоговых электромеханических приборов. Технические требования к приборам. Классификация электромеханических приборов. Условные обозначения, наносимые на шкалы электромеханических приборов. Классы точности приборов.

[1, §§ 4.1-4.6; 2, §§ 4.1-4.3]

Вопросы для самопроверки

- 1. Какие измерительные приборы называются аналоговыми?
- 2. Изобразите и поясните общую структурную схему аналогового прибора?
- 3. Перечислите общие узлы и элементы конструкции аналогового измерительного прибора.
 - 4. Так создается противодействующий момент в приборах?
- 5. Из каких материалов изготавливаются кожухи приборов и каково их назначение?
- 6. Какие требования предъявляются к осям и поднятникам электроизмерительных приборов?
 - 7. Опишите конструкцию успокоители и поясните их назначение.
- 8. Каково назначение корректоров, арретиров в измерительных механизмах приборов и как они установлены?
 - 9. Что называется временем успокоения?
 - 10. Что понимается под перегрузочной способностью прибора?
 - 11. Какие обозначения наносятся на шкалы электромагнитных приборов?

Тема 2.2. Магнитоэлектрические и выпрямительные приборы

Конструкция, принцип действия, назначение, достоинства и недостатки, область применения магнитоэлектрических приборов (магнитоэлектрические механизмы - с подвижной рамкой, подвижным магнитом, логометры, гальванометры).

Приборы выпрямительной системы. Схемы включения приборов. [1, §§ 5.1-5.4, 5.10; 2, §§ 5.1-5.5, 6.1-6.4]

Вопросы для самопроверки

- 1. Каково устройство измерительного механизма магнитоэлектрической системы?
- 2. Выведите формулу вращающегося момента измерительного механизма магнитоэлектрической системы.
- 3. Перечислите достоинства, недостатки и область применения приборов магнитоэлектрической системы.
- 4. Какова чувствительность магнитноэлектрического механизма и от чего она зависит?
- 5. В чём принципиальная разница между амперметром и вольтметром магнитоэлектрической системы?
- 6. Каково устройство и принцип действия механизма логометра магнитной электрической системы?
- 7. В каком случае используются приборы выпрямительной системы? Приведите примеры схем включения приборов.
- Тема 2.3. Электромагнитные, электростатические, индукционные, электродинамические, ферродинамические, вибрационные приборы.

Определение, конструкция, принцип действия, назначение, достоинства, недостатки, область применения электромагнитных, электростатических, индукционных, электродинамических, ферродинамических и вибрационных приборов. Схемы включения приборов. [1, §§ 5.5-5.9, 19..1-13.2, с 315-317; 2, с. 107-136..194-196]

- 1. Какие конструкции измерительных механизмов электромагнитной системы вам известны?
- 2. Выведите формулу вращающегося момента измерительного механизма электромагнитной системы.
- 3. Укажите достоинства и недостатки измерительных механизмов электромагнитной системы.
- 4. Для чего используется астатический механизм электромагнитных приборов?
- 5. Каково устройство измерительных механизмов электродинамической и ферродинамической систем?
- 6. Выведите формулу вращающегося моментом измерительного механизма электродинамической системы.
- 7. Какое влияние оказывает внешние факторов (частота, магнитное поле, температура) на показания электродинамических приборов?

- 8. Каково конструктивное использование и принцип работы измерительных механизмов индукционной системы?
 - 9. Выведите формулу вращающегося момента индукционных приборов.
- 10. Каковы достоинства и недостатки измерительных механизмов индукционной системы?
- 11. Что вы знаете о конструктивном использовании электростатических приборов?
- 12. Выведите формулу, определяющую угол поворота подвижной части измерительного механизма электростатической системы.
- 13. Какова область применения, достоинства и недостатки электростатических приборов?

Тема 2.4. Измерительные мосты

Классификация, назначение, принцип действия, область применения, мостовых цепей. Одинарные, двойные мосты постоянного тока.

Мосты переменного тока: четырёхплечевые, шестиплечевые, трансформаторные, Т-образный (одинарные и двойные). Автоматические и полуавтоматические мосты. Схемы включения мостовых цепей. [1, § 6.5: 2, § 13.1-13.3]

Вопросы для самопроверки

- 1. Приведите классификацию измерительных мостов и области их применения.
- 2. Изобразите схему одинарного моста постоянного тока и принцип его работы.
- 3. Каким образом работает 4 зажимная система одинарного моста постоянного тока?
 - 4. Для чего предназначены двойные мосты и каким образом они работают?
- 5. Объясните назначение и принцип действия мостов переменного тока и вывести уравнение равновесия.
- 6. Приведите примеры схем мостов и переменного тока, а также области их применения.
- 7. Нарисуйте схемы трансформаторных мостов, их достоинства. Напишите уравнение равновесия трансформаторных мостов.
- 8. Какие мосты называются уравновешенными, полууравновешенными и неуравновешенными?

Тема 2.5. Приборы сравнения

Классификация, назначение, принцип действия, область применения компенсационных цепей.

Компенсаторы постоянного и переменного тока. Полуавтоматические и автоматические компенсаторы. Схемы включения компенсаторных цепей для сравнения двух независимых напряжений или токов. [1, § 6.6: 2, §§ 14.1-14.2]

- 1. Каковы назначения компенсационных измерительных цепей область их использование?
 - 2. Нарисуйте схему компенсатора постоянного тока и поясните его работу.
- 3. Нарисуйте схему прямоугольно-координатного компенсаторы переменного тока и поясните я работу.
- 4. Что представляет собой полуавтоматические и автоматические компенсаторы?

РАЗДЕЛ 3. ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ НЕЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

Тема 3.1. Общие сведения об измерительных приборах.

Достоинства электрических методов измерения неэлектрических величин. Классификация, структурные схемы, характеристики первичных измерительных преобразователей неэлектрических величин в электрические. [1, §§ 16.1-16.3; 2, § 24.1]

Вопросы для самопроверки

- 1. Что называется электрической измерительной цепи?
- 2. Дайте определение преобразовательного элемента измерительные цепи. 3. Что понимается под измерительным преобразователем?
 - 4. Какие виды преобразования сигналов вам известны?
- 5. Перечислите основные технико-экономические характеристики измерительных преобразователей и поясните их.
- 6. Как определяется функцией измерительной цепи, состоящей из нескольких преобразователей?
- 7. Поясните определение чувствительности и погрешность измерительные цепи, состоящей из нескольких преобразователей.
- 8. Каковы достоинства электрических измерений неэлектрических величин? 9. Приведите упрощенный структурные схемы приборов для измерения неэлектрических величин.
- 9. Перечислите основные характеристики преобразователей неэлектрических величин.
 - 10. Приведите классификацию измерительных преобразователей.

Тема 3.2. Параметрические преобразователи

Принцип действия, конструкция и область применения резистивных, индуктивных и взаимной индуктивности, магнитоупругие, емкостных, измерительных приборов.

Особенности электрических термометров сопротивления. Электрические преобразователи. [1, с. 355-357, 364-368, 370-371; 2, § 24.2]

- 1. Приведите примеры и принцип действия резистивных измерительных преобразователей.
- 2. Что представляет собой где применяется индуктивные и взаимоиндуктивный (трансформаторный) измерительные преобразователи?
- 3. Магнитоупругие емкостные измерительные преобразователи. Конструкция, принцип действия и область применения.
- 4. Какие терморезисторные преобразователи используются для измерения температуры и в каких диапазонах?
 - 5. Приведите схемы измерения температуры термометром сопротивления.
- 6. Поясните назначение и принцип действия электрических измерительных преобразователей.
- 7. Какие измерительные преобразователи входят в группу электромагнитных ИП, объясните их работу.
- 8. Каков принцип действия электростатических измерительных преобразователей?
- 9. Начертите принципиальные схемы различных параметрических преобразователей.

Тема 3.3. Генераторные преобразователи

Принцип действия, конструкция и область применение индукционных, пьезо-электрических и термоэлектрических преобразователей.

Особенности конструкции вторичных приборов. [3, с. 357-360, 363-364, 368-370: 2, § 24.2]

Вопросы для самопроверки

- 1. Объясните принцип действия дотационных измерительных преобразователей.
- 2. Каким образом можно измерить температуру при помощи термоэлектрического преобразователя?
- 3. Какие виды термоэлектрических преобразователей используются? Приведите краткие характеристики.

Тема 3.4. Оптико-электрические и электроакустические преобразователи

Классификация, схема и характеристики оптика теория электрических и электроакустических преобразователей. Фотоэлектрические преобразователи. Электроизмерительные приборы с оптиком-электронным отчетным устройством.

Приборы на жидких кристаллах. Оптические параметры. [2, с. 247-248, 257-258]

- 1. В чём заключается принцип действия лазерного светодальномера?
- 2. Что лежит в основе работы пирометров изучение? Для измерения каких температур они предназначены?

РАЗДЕЛ 4. ЭЛЕКТРОННЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Тема 4.1. Общие сведения

Классификация электронных измерительных приборов. Структурная схема, основные узлы, область применения электронных измерительных приборов. Классы точности приборов. [1, §2.1 2, §§ 251-25.3]

Вопросы для самопроверки

- 1. Приведите классификацию электронных измерительных приборов.
- 2. Из каких узлов состоит структурная схема электронного измерительного прибора?

Тема 4.2. Электронные вольтметры.

Назначение, область применения, структурные схемы, основные узлы электронных вольтметров.

Аналоговые электронные приборы прямого действия.

Универсальные вольтметры.

Микровольтметры, милливольтметры постоянного тока. Импульсные вольтметры. [1. § 8.2; 2. §§ 25.4-25.6]

Вопросы для самопроверки

- 1. Перечислите основные структурные схемы электронных вольтметров и поясните их работу.
 - 2. Назовите несколько типов и область применения электронных вольтметров.
- 3. Какое назначение усилителя в электронных вольтметров? Какие типы усилителей постоянного тока нашли применение?
- 4. Приведите схемы и назначения преобразователей амплитудного, средниевыпрямленного и действующего (среднеквадратного) значений переменного тока.

Тема 4.3. Измерительные генераторы

Классификация измерительных генераторов. Обобщенная структурная схема и основные параметры измерительных генераторов.

Генераторы гармонических сигналов. Низкочастотные генераторы. Высокочастотные генераторы. Сверхвысокочастотные генераторы. Синтезаторы частоты. Генераторы качающейся частоты. Генераторы импульсов. Генераторы шумовых сигналов. Генераторы сигналов специальной формы. [1, § 8.5; 2, §§ 26.1-26.4 3, § § 9.1-9.6]

- 1. Что представляет собой измерительный генератор?
- 2. Какова область применения измерительных генераторов?
- 3. Нарисуйте структурную схему измерительного генератора гармонических колебаний и укажите назначение основных узлов.
- 4 Нарисуйте структурные схемы, поясняющие алгоритмы синтеза частот поясните его работу.
- 5. Из каких основных устройств состоят генераторы импульсов какое их назначение?
- 6. Расскажите о назначении генераторов шумовых сигналов генераторах сигналов специальной формы.

Тема 4.4. Электронно-лучевые осциллографы

Классификация приборов для исследования формы, амплитудных, частотных, временных фазовых параметров электрических сигналов. Обобщенная структурная схема надежности основные параметры электронно-лучевого осциллографа. Электронно-лучевая трубка.

Универсальные, одноканальные, многоканальные, цифровые, скоростные и стробоскопические, запоминающие осциллографы.

Рекомендации по выбору применению осциллографа.

Анализаторы спектра частот. Регистрирующие приборы. [1, § 68.3, 7.1-7.6, 2, 27.1-27.4; 3, 7.2-7.5, 20.1-20.4]

Вопросы для самопроверки

- 1. Назовите виды электронно-лучевых осциллографов и область их применения.
- 2. Нарисуйте структурную схему универсального электронно-лучевого осциллографа. Опишите назначение его узлов.
 - 3. Опишите режимы работы электронно-лучевых осциллографов.
- 4. Нарисуйте структурную схему регистрирующего прибора поясните назначение основных ее узлов.
 - 5. Перечислите методы регистрации измеряемой величины.
 - 6. Какие требования предъявляются к регистрирующим устройствам?
 - 7. Назовите виды диаграммных лент.
 - 8. Какова конструкция регистрирующих устройств?
 - 9. Что вам известно о самопишущих приборах прямого действия?
- 10. Какова роль микропроцессорных устройств, работающих с самопишущими приборами?

Тема 4.5. Электронные омметры

Общие сведения. Схемы электронных омметров. Назначение, принцип работы, область применения тераомметров, миллиометров.

- 1. Поясните работу электронного у метро.
- 2. Нарисуйте схемы для измерения сопротивления электронными приборами.
- 3. Приведите достоинства и недостатки электронных измерительных приборов.

Тема 4.6. Измерители параметров элементов электрических цепей

Изменение параметров цепей с сосредоточенными постоянными. Общие сведения, классификация приборов: приборы непосредственной оценки, приборы сравнения, резонансные измерители, измерители амплитудно частотных, амплитудных характеристик, измерители коэффициента шума.

Измерите параметров цепей с распределенными постоянными. Общие сведения, классификация приборов: измерительной линии, измерители полных сопротивлений, измерители параметров четырехполюсников, измерители неоднородностей в линиях передачи, импульсивные рефлектометры.

Измеритель параметров полупроводниковых приборов, интегральных микросхем. [3. §§ 10.1-10.3.3, 11.1-11.4.2]

Вопросы для самопроверки

- 1. Приведите классификацию приборов для измерения параметров цепей с сосредоточенными постоянными.
- 2. Какие эквивалентные схемы двухполюсников можно рассмотреть ее? Какие параметры измеряются?
- 3. Что представляет собой магнитное электрические омметры и тераомметры? Нарисуйте схему.
- 4. Нарисуйте структурную схему измерителя параметров двухполюсника контурного типа и объясните принцип действия.
 - 5. Что понимается под измерением параметров четырехполюсников?
- 6. Приведите классификацию приборов для измерения параметров цепей с распределенными постоянными. 7. Что понимается под измерительными линиями, и конструкция? 8. Каким образом измеряются S-параметры четырехполюсников?

РАЗДЕЛ 5. ЦИФРОВЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Тема 5.1. Основные понятия

Общие сведения о цифровых приборах, их классификация. Основные элементы цифровых приборов. Процесс дискретизации измеряемых величины во времени, квантования их по уровню цифровое кодирование. Классы точности приборов. [1, § 9.1, 2. § 29.1]

- 1. Дайте определение цифрового измерительного прибора.
- 2. Нарисуйте обобщенную структурную схему цифровых измерительных приборов и поясните назначение основных узловых элементов.
 - 3. Что вам известно о численном кодировании?

- 4. В чем заключается преимущество двоичной системы счисления перед десятичной?
 - 5. Как выполняется переход от десятичной в двоичную систему счисления?
 - 6. Как перевести число из двоичной системы счисления в десятичную?

Тема 5.2. Типы цифровых приборов

Структурные схемы, характеристики, область применения цифровых приборов времяимпульсного, кодоимпульсного частотноимпульсного типа.

Цифровые вольтметры, частотомеры, фазометры. Цифровые осциллографы. Цифровые приборы с микропроцессорным управлением. [1, § 9.2-9.5: 2, §§ 29.2-29.3, 30.1-30.41]

Вопросы для самопроверки

- 1. Какие методы аналого-цифрового преобразования используются в работе ЦИП? В чем они состоят?
- 2. Приведите структурную схему, поясните принцип действия цифрового вольтметра.
 - 3. Укажите достоинства недостатки цифровых измерительных приборов.
 - 4. Что вам известно о сочетании работы ЦИП с микропроцессорной техникой?

РАЗДЕЛ 6. ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ВЕЛИ-ЧИН

Тема 6.1. Измерение тока и напряжения

Основные методы измерения постоянных токов и напряжений.

Назначение, схемы включения н область применения шунтов и добавочных резисторов. Методы измерения переменных токов напряжений промышленной частоты.

Общие понятия об измерительных трансформаторов. Схема включения, режимы работы измерительных трансформаторов. Правила безопасности труда.

Особенности измерения токов и напряжений низкой, повышенной и высокой частоты.

Измерение импульсных напряжений.

Электромагнитные помехи в измерительной цепи и методы борьбы с ними.

 $[1, \S\S 3.1-3.5, 10.1-10.42, \S\S 12.1-12.3, 15.1-15.3]$

- 1. Каково назначение и применение измерительных трансформаторов?
- 2. Поясните режим работы трансформаторного тока. Нарисуйте векторную диаграмму для этого трансформатора.
- 3. Поясните режим работы трансформатора напряжения. Нарисуйте векторную диаграмму для этого трансформатора.
- 4. С какой целью заземляется вторичная обмотки трансформатора тока и напряжения?

- 5. По каким параметрам выбирают сам для заданной схемы трансформаторы тока и напряжения?
- 6. Что называется методической погрешностью и по какой причине она возникает?
- 7. Выведите формулу методической погрешности, возникающий при включении в цепь амперметра точка
- 8. Выведите формулу методическую погрешности, возникающий при изменении напряжения вольтметром.
 - 9. Какие методы используются при изменении малых токов и напряжений?
- 10. Какую величину тока можно измерить зеркальным гальванометром, Стрелочная магнита электрическим прибором?
- 11. Каких случаях используют квадратный электрометр? Каково его устройство?
- 12. Укажите пределы измерения токов и напряжений приборами различных систем при измерении средних токов и напряжений (от 10 мА до 250-100 А и от 10 мВ до 600 В).
- 13. Каковы наиболее распространённые способы измерение больших токов и напряжений?
- 14. Как производятся измерения переменных токов и напряжений Промышленной частоты?
- 15. Приборами каких систем производится измерение токов напряжений на повышенной и высокой частоте?
 - 16. Каковы методы борьбы с электронными помехами в измерительной цепи?

Тема 6.2. Измерение сопротивления

Классификация электрических сопротивлений. Особенности измерения малых, средних и больших сопротивлений. Измерение сопротивлений омметром, метаомметром, методом амперметра и вольтметра, одинарным и двойным мостом.

Особенности измерения сопротивления заземляющих устройств. Методы измерения. Измерение сопротивлений заземления.

Измерение сопротивлений изоляции. [1, §§ 11.1-11.2; 2, §17.1]

- 1. Каким образом подразделяются сопротивления по величине?
- 2. Каковы особенности измерения малых и больших сопротивлений?
- 3. Приведите две схемы измерения сопротивлений методом амперметра сделайте выводы о применение этих схем.
- 4. Как работают омметры, показания которых зависят от напряжения источника питания? Приведите схему омметра. Каким образом в танках омметрах производится установка стрелки на контрольную отметку?
- 5. Как работают омметры, показания которых не зависят от напряжения источника? Приведите схему омметра и поясните ее работу.
- 6. Приведите принципиальную схему одинарного моста и сделайте вывод условия его равновесия.
 - 7. Нарисуйте принципиальную схему двойного моста поясните ее работу.

- 8. Как измерить величину сопротивления изоляции установок, не находящихся под рабочим напряжением?
- 9. Расскажите об измерении сопротивления изоляции установки, находящейся под рабочим напряжением.
- 10. Какие методы измерения сопротивления заземления вам известны? Приведите схемы и дайте сравнительную оценку этим методам.

Тема 6.3. Измерение мощности и энергии

Способы измерения мощности электрического тока. Измерение мощности в цепях постоянного тока. Методы измерения активной реактивной мощности в однофазной и трехфазной цепях переменного тока.

Измерение электрической энергии. Однофазный индукционный счетчик, его конструкция, схема включения в цепь. Измерение активной реактивной энергии в цепях трехфазного тока. Схема включения трехфазных счетчиков через измерительные трансформаторы.

Электронные счетчики. [1,§§13.1-13.4,12.1-12.4, 2, §§16.1-16.5]

- 1. Докажите, что угол отклонения подвижной части ваттметра электродинамической системы прямо пропорционален активной мощности.
 - 2. Как определяется цена деления ваттметра?
- 3. Как определить цену деления ваттметра, если на его шкале не указано значение cos f, и если оно указано, но не равно единице?
- 4. Нарисуйте схему включения ваттметра через измерительные трансформаторы с указанием разметки зажимов.
- 5. Приведите схемы включения ваттметра в трехфазную трехпроводную цепь при симметричной нагрузке.
- 6. Как устроены двухэлементный и трехэлементный ваттметры? Приведите схемы их включения в трехфазную цепь.
- 7. В каких случаях для измерения активной мощности в трехфазной цепи применяются:
 - а) одни однофазный ваттметр электродинамической системы;
 - 6) два однофазных ваттметра электродинамической системы;
 - b) три однофазных ваттметра электродинамической системы?
- 8. Докажите, что с помощью двух однофазных ваттметров можно измерить мощность в цепи трехфазного тока как при равномерной, так и при неравномерной нагрузке.
- 9. Нарисуйте векторную диаграмму схемы двух ваттметров для измерения активной мощности при равномерной нагрузке и найдите выражения для показания обоих приборов.
- 10. Докажите, что с помощью ваттметров можно измерять реактивную мощность в трехфазной цепи.
- 11. Приведите схемы измерения реактивной мощности в цепях трехфазного тока.
- 12. Как по показаниям двух ваттметров (схема двух ваттметров) определить коэффициент мощности трехфазной цепи?

- 13. Какова конструкция и принцип действия индукционного счетчика?
- 14. Приведите доказательства возможности индукционного счетчика измерять электрическую энергию.
 - 15. В чем состоит явление самохода счетчика и как оно устраняется?
 - 16. Как определить номинальную действительную постоянные счетчика?
- 17. Что следует понимать под абсолютной и относительной погрешностями счетчика?
 - 18. Объясните характер изменения корневой погрешности счетчика.
 - 19. Что понимается под чувствительностью счетчика?
- 20. Приведите схему включения однофазного счетчика активной энергии в сеть.
- 21. Начертите схемы включения счетчиков для измерения активной энергии в цепях трехфазного тока. Укажите типы применяемых счетчнков.
- 22. Начертите схемы включения счетчиков для измерения реактивной энергии в целях трехфазного тока. Укажите типы применяемых счетчиков.

Тема 6.4. Измерение частоты, временных интервалов угла сдвига фаз.

Электрические схемы, характеристики, область применения электромеханических приборов для измерения частоты. Осциллографические методы измерения частоты, временных параметров и амплитуды.

Резонансные, гетеродинные, электронно-счетные цифровые частотомеры. Основные технические показатели приборов.

Электрические схемы, характеристики, область применения электромеханических приборов для измерения коэффициентов мощности и угла сдвига фаз. Электронный фазометр. Осциллографические методы измерения угла сдвига фаз. Основные технические показатели приборов для измерения угла сдвига фаз. [1, §§14.1-14.2, 9.5; 2, с. 194-199, §§ 28.4-28.5, 30.3-30.4]

Вопросы для самопроверки

- 1. Каково устройство и принцип действия электродинамического фазометра?
- 2. Нарисуйте электрическую схему электродинамического фазометра.
- 3. Начертите векторную диаграмму электродинамического фазометра и покажите, что угол отклонения подвижной части фазометра зависит от угла сдвига фазмежду током и изображением.
- 4. Поясните электрическую схему трехфазного электродинамического фазометра
- 5. Нарисуйте структурную схему и расскажите о работе электронного фазометра.
 - 6. Как устроен электродинамический частотомер?
 - 7. Поясните работу электронного конденсаторного частотомера.
 - 8. Как работает вибрационный частотомер?
- 9. Как с помощью электронного осциллографа измеряют частоту сдвига фаз? От чего зависит точность измерения при этом?

Тема 6.5. Измерение параметров конденсаторов и катушек индуктивности

Методы измерения индуктивности катушки. Способы согласованного встречного включения катушек.

Измерение индуктивности и взаимоиндуктивности на в низких высоких частотах.

Измерение емкости приборами непосредственной оценки мостом переменного тока.

Измерение величины тангенса угла диэлектрических потерь конденсатора. Изменение индуктивности емкости куметром.

[1, § 11.3; 2, §§ 17.2, 28.2-28.3]

Вопросы для самопроверки

- 1. Какими методами можно измерить индуктивность и емкость?
- 2. Приведите схему измерения индуктивности методом амперметра н вольтметра. От каких условий зависит точность измерения этим методом?
- 3. Приведите схему включения приборов для замера индуктивности методом ваттметра. Назовите условия, при которых результат измерения может ныть значительную погрешность.
 - 4. Расскажите об определении взаимной индуктивности двух катушек.
- 5. Назовите известные вам методы измерения емкости и дайте краткую характеристику.
 - 6. Выведите условия равновесия моста переменного тока.
 - 7. Поясните метод измерения емкости баллистическим гальванометром.
- 8. Поясните работу схемы высоковольтного моста для измерения емкости и угла потерь.

Тема 6.6. Измерение магнитных величин

Общие сведения. Измерение магнитного потока с помощью веберметра.

Измерение магнитной индукции напряженности магнитного поля постоянного магнита с использованием эффекта Холла.

Измерение потерь мощности в стали.

Преобразователи на основе явления ядерного магнитного резонанса. [1, §§ 15.1-15.7; 2, §§ 22.1-23.5]

- 1. Назовите основные магнитные величины и единицы их измерения.
- 2. Назовите и поясните известные вам методы измерения магнитного потока.
- 3. Как измеряется магнитный поток с помощью веберметра?
- 4. Назовите и поясните известные вам методы измерения магнитной индукции и напряженности магнитного поля.
- 5. В чем состоит эффект Холла и как он используется для определения магнитной индукции?
 - 6. Поясните ваттметровый метод определения потерь на перемагничивание.
 - 7. Как разделить потери на гистерезис и вихревые токи?

РАЗДЕЛ 7. АВТОМАТИЗАЦИЯ ИЗМЕРЕНИЙ

Основные направления автоматизации измерений. Микропроцессоры в измерительной технике.

Информационно-измерительные системы.

Разновидности интерфейсов.

Измерительно-вычислительные комплексы.

[1, §§ 17.1,17.3; 2, §§ 31.1-31.3]

- 1. Укажите назначение измерительно-информационных систем.
- 2. Перечислите группы ИИС в зависимости от их назначения.
- 3. Расскажите о путях развития ИИС.
- 4. Что входит в понятие Государственной системы приборов агрегатных комплексов?
 - 5. Каковы основные структуры ИИС?
 - 6. Что вам известно об измерительно-вычислительных комплексах?

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ

контрольная работа для УЧАЩИХСЯ-ЗАОЧНИКОВ СРЕДНИХ СПЕЦИАЛЬНЫХ УЧЕБНЫХ ЗАВЕ-ДЕНИЙ

ЗАДАНИЕ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

Каждый учащийся выполняет вариант контрольной работы по списку в учебном журнале.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ДОМАШ-НЕЙ КОНТРОЛЬНОЙ РАБОТЫ

- 1. Контрольная работа выполняется в:
- а) в печатном варианте.

При выполнении печатного варианта рекомендуется выбрать один стиль оформления (наименование и размер шрифта, отступы, номера страниц и т.д.), оставляя поля для замечаний рецензента.

б) в письменном варианте.

При выполнении письменного варианта работа оформляется в отдельной тетради

чернилами черного или синего цвета, оставляя поля для замечаний рецензента.

- 2. На обложке тетради (титульном листе) должны быть четко написаны:
- а) название учебного заведения,
- б) специальность,
- в) номер группы,
- г) шифр,
- д) название контрольной работы (номер, дисциплина),
- е) фамилия, имя, отчество студента.
- 3. Выполнение работы должно быть последовательным, с указанием номера задания.
 - 4. Все графические элементы должны быть пронумерованы и подписаны.
- 5. Ответы на вопросы и решение задачи излагать подробно, аккуратно с соответствующими пояснениями и дополнениями.
- 6. По окончанию работы следует указать список использованной литературы, дату выполнения и подпись.
- 7. После получения прорецензированной работы необходимо исправить указанные ошибки (если таковые имеются) и повторно сдать на проверку.

Дать ответы на вопросы

- 1. История развития науки электрических измерений. Роль значение измерений в науке и технике. Задачи развития электроизмерительной техники.
- 2. Опишите устройство работу измерительного механизма электромагнитной системы. Выражение величины угла отклонения подвижной части. Достоинства и недостатки, область применения приборов электромагнитной системы.
- 3. Нарисуйте структурную схему электронно-лучевого осциллографа опишите назначение основных его узлов.

Решите задачи

- 1. Определить чувствительность по напряжению магнитоэлектрического прибора на 5 мА с внутренним сопротивлением на 10 Ом и шкалой на 100 делений. Найти сопротивление прибора, чтобы при той же чувствительности по току чувствительность по напряжению составила 4 дел/мВ.
- 2. В сеть однофазного тока через трансформатор тока 500/5 и трансформатор напряжения 6000/100 (рисунок 1) включены приборы: амперметр, вольтметр, ваттметр. Определить ток I1 напряжение U1, активную мощность P цепи коэффициент мощности цепи $\cos \varphi$, если показание амперметра I2 = 4 A, вольтметра U2 = 100 B, ваттметра 350 Bт.
- 3. Имея ваттметр, вольтметр и амперметр, требуется измерить взаимную индуктивность двух катушек. Была собрана соответствующая схема. При одном варианте последовательного соединения катушек приборы показали 4 A, 20 B, 48 Bт, а при другом варианте последовательного соединения катушек приборы показали 3 A, 27 Bт. Частота источника питания 50 Гц. Определить взаимную индуктивность катушек. Начертить схему измерения.
- 4. Выполнить перевод чисел 1000 и 1110 из двоичной системы счисления в десятичную.

ВАРИАНТ 2

Дать ответы на вопросы

- 1. Каковы причины возникновения погрешностей при измерении? Дайте определение приведите формулы для вычисления абсолютной, относительной, приведенной погрешностей, поправки, вариации показаний.
- 2. Цифровые измерительные приборы (ЦИП). Общие сведения о цифровых приборах. Обобщенная функциональная схема ЦАП, назначение основных узлов ее. Системы счисления, коды.
- 3. Компенсационный метод измерения ЭДС. Приведите схему измерения ЭДС и поясните ее работу.

- 1. Амперметр со шкалой на 5 А сопротивлением 0,6 Ом зашунтирован для измерения тока большой величины. При измерении тока 90 А стрелка прибора остановилась против деления 3,6 А. Определите сопротивление шунта и предел измерения зашунтированного амперметра.
- 2. На щитке счетчика написано: 220 B, 5 A, 1 Квт•ч 2200 оборотов диска. Вычислить номинальную постоянную счетчика, действительную постоянную, относительную погрешность, (поправочный коэффициент), если при поверке счетчика при неизменном напряжение U = 220 B и неизменной величине тока I = 5 A диск счетчика сделал N=37 оборотов за 60 c.
- 3. Определить удельные потери в стали сердечника катушки и магнитную индукцию, если катушка имеет 200 витков с активным сопротивлением 0,3 Ом. При измерении приборы показали: 300 Вт; 1,5 А; 100 В. Сопротивление вольтметра и параллельной цепи ваттметра по 3000 Ом, амперметра и последовательной катушки ваттметра по 0,5 Ом. Сердечник весит 2 кг, его размеры 40мм х 40мм.
- 4. Выполнить перевод чисел 13 и 49 десятичной системы счисления в двоичную.

BAPHAHT 3

Дать ответы вопросы

- 1. Приведите классификацию методов измерения, поясните каждый из методов, литья их сравнительную оценку.
- 2. Принцип действия, свойства и область применения тепловых измерительных преобразователей при измерении электрических величин.
- 3. Приведите схему и опишите, каким образом определяется место повреждения кабеля методом петли Муррея.

- 1. Расширение предела измерения электростатического вольтметра осуществляется по схеме (рисунок 2). Определить величину добавочной емкости, если предел измерений вольтметра на 1,5 к. необходимо расширить 15 кв, емкость вольтметра 3 10 мкФ.
- 2. Активная мощность, подводимая к трехфазному асинхронному двигателю, измерялась по методу двух ваттметров. При номинальной нагрузке двигателя стрелки обоих ваттметров отклонялись в одну н ту же сторону, при этом первый ваттметр показывал P = 1274 Вт, второй P2 = 589 Вт. При уменьшении нагрузки двигателя первый ваттметр показывал P1` = 571 Вт, а второй ваттметр P2` = 0. Когда с двигателя сняли нагрузку и он стал работать вхолостую, то первый ваттметр показал P1` = 550 Вт, а стрелка второго ваттметра отклонилась в обратную сторону; после переключения концов параллельной обмотки второй ваттметр показал P2" = 23Вт. Определить для трех случаев активную мощность, подводимую к двигателю, (угол сдвига фаз между током напряжением, коэффициент мощности) и реактивную мощность.
- 3. Напряжение цепи (рисунок 3) изменяется по закону, график которого изображен на рисунке 4. Определить показания вольтметров V1 и V2, если имеем приборы электродинамической системы. Сопротивление xc "R".

4. Выполнить перевод чисел 1001 и 11100 из двоичной системы счисления в десятичную.

ВАРИАНТ 4

Дать ответы на вопросы

- 1. Опишите устройство работу измерительного механизма магнитоэлектрической системы. Выражение величины угла отклонения подвижной части. Достоинства и недостатки, область применения приборов магнитоэлектрической системы.
- 2. Измерение активной энергии в трехфазной цепи. Двух- и трехэлементный счетчик активной энергии, схемы их включения в сеть.
- 3. Каково назначение н конструктивное исполнение шунтов и добавочных сопротивлений?

Решить задачи

- 1. Для измерения напряжения 220 В взяты два вольтметра, соединенные последовательно. Первый вольтметр на 150 В с внутренним сопротивлением 12 кОм, второй на 120 В с внутренним сопротивлением 10 кОм. Определить показания каждого вольтметра и наибольшее возможные относительную абсолютную погрешности показаний, если оба вольтметра класса 0,5. Вычислить мощность, потребляемую каждым прибором при данном измерении.
- 2. При измерении сопротивления изоляции проводов двухпроводной линии относительно земли вольтметром с сопротивлением 30 кОм были получены следующие показания приборов: напряжение сети 220 В, напряжение между первым проводом и землей 20 В, между вторым проводом землей 50 В. Определить величину сопротивления качество изоляции. Составить схемы измерения.
- 3. Для термопары XA (хромель-алюмель) определить показания прибора термо-ЭДС при измерении температуры 400° C, если свободные концы термопары находятся в помещении, имеющем температуру 20° C.
- 4. Выполнить перевод чисел 10 н 23 из десятичной системы счисления в двоичную.

ВАРИАНТ 5

Дать ответы на вопросы

- 1. Опишите устройство работу измерительного механизма электродинамической системы. Выражение величины угла отклонения подвижной части. Достоинства и недостатки, область применения приборов электродинамической системы.
 - 2. Определение потерь в стали ваттметровым методом.
 - 3. Что изучает метрология?

Решить задачи

1. Для измерения активной мощности, равной 6 кВт, трехфазной симметричной цепи с фазным напряжением 127В и соз f - 0.8 использованы два одинаковых

ваттметра электродинамической системы со школами на 150 делений. Составить схему измерения, подобрать ваттметры по току и напряжению, определить показания каждого ваттметра, нарисовать в масштабе векторную диаграмму токов и напряжений.

- 2. Для измерения сопротивления R были измерены ток I в этом сопротивлении с относительной погрешностью 1% мощность потерь в нем P с относительной погрешностью 1,5%. Вычислить наибольшую возможную относительную погрешность при измерении сопротивления R.
- 3. Сопротивление изоляции двухпроводной линии, работающей под напряжением 120 В, измерялось вольтметром с внутренним сопротивлением 36 кОм. Напряжение между каждым проводом землей оказалось соответственно U1 = 25 В, U2 = 60 В. Определить значение сопротивления изоляции на землю оценить качество изоляции.
- 4. Выполнить перевод чисел 1011 и 101011 из двоичной системы счисления в десятичную.

ВАРИАНТ 6

Дать ответы на вопросы

- 1. Каково устройство принцип действия индукционного счетчика активной энергии? Приведите схему включения счетчика активной энергии в однофазную сеть. Определение погрешностей счетчика.
- 2. Приведите две схемы измерения сопротивлений методом амперметра и вольтметра, сделайте вывод о применении этих схем.
 - 3. Кодирующие преобразователи в цифровых измерительных приборах.

- 1. Определить относительную погрешность, допускаемую при измерении мощности потерь в стали сердечника катушки (рисунок 5) без учета потерь в приборах. Показания приборов: 100 В; 2,5 А, 28 Вт. Сопротивление вольтметра 5000 Ом, сопротивление катушек ваттметра: последовательной 0,1 Ом; параллельной 1500 Ом. Активное сопротивление исследуемой катушке 0,8 Ом.
- 2. В трехпроводную сеть трехфазного тока включены амперметры на 5 A, вольтметры на 100 В два однофазных ваттметра на 5 A 150 В со шкалой на 150 делений через трансформаторы тока 200/5 трансформаторы напряжения 6000/100. Определить мощность нагрузки и показания ваттметров в делениях шкалы, если показания вольтметров по 95 В, амперметров 4,2 A, а коэффициент мощности нагрузки 0,8. Начертить схему включения приборов.
- 3. Определить емкость конденсатора, если при измерении методом баллистического гальванометра были получены следующие результаты: при включении на известную емкость C 3000 п Φ , заряженную до напряжения = 150 B, a = 30 делений, а при включении на измеряемую емкость, заряженную до напряжения U2 = 120 B, a2 = 40 делений. Привести схему измерения.
- 4. Выполнить перевод чисел 98 13 из десятичной системы счисления в двоичную.

Дать ответы на вопросы

- 1. Каково назначение, применение, устройство режимы работы измерительного трансформатора напряжения. Погрешность и векторная диаграммы измерительного трансформатора напряжения.
- 2. Измерение реактивной мощности трехфазных трех- и четырехпроводных цепях. Приведите схемы включения приборов, векторные диаграммы и аналитические обоснования.
 - 3. Понятие об устройстве и принципы действия электронных вольтметров.

Решите задачи

- 1. Амперметр, сопротивление которого Ra = 0,3 Ом, имеет шкалу в 150 делений и постоянную Ca 0,001 A/дел. Определить сопротивление шунта при помощи которого можно было бы измерить ток до 300 A.
- 2. Определить длину контрольного кабеля в медными жилами сечением 2,5 мм2 от трансформатора тока с номинальным сопротивлением 0,5 Ом к приборам: амперметру электромагнитной системы и электродинамическому ваттметру, сопротивление обмоток которых составляет соответственно 0,06 Ом 0,25 Ом.
- 3. При подключении катушки индуктивности к источнику постоянного тока амперметр показал I=12 A, вольтметр U=24 B. При подключение в сеть переменного тока с частотой 50 Γ ц показания стали: I=2 A, U=24 B. Определить индуктивность катушки.
- 4. Выполнить перевод чисел 11 и 111001 двоичной системы счисления в десятичную.

ВАРИАНТ 8

Дать ответы на вопросы

- 1. Как с помощью двух одноэлементных ваттметров измерить активную мощность в цепях трехфазного тока?
- 2. Опишите работу омметра, показания которого зависят от напряжения источника питания.
- 3. Перечислите общие узлы в детали конструкции электромеханических аналоговых приборов, поясните их конструкцию назначение.

- 1. Термоэлектрический пирометр XA для измерения температуры печи отрегулирован для работы при температуре окружающей среды 10° С. Температура окружающей среды возросла до 40° С. Определить действительную температуру печи, если показания пирометра 400° С.
- 2. На щитке счетчика написано: 120 В; 5 А; 1 ГВт•ч 500 оборотов диска. Определить номинальную постоянную счетчика, абсолютную и относительную погрешности, поправочный коэффициент, если при проверке счетчика при постоянной

величине напряжения U = 120 B и тока I = 4 A диск счетчика сделал 42 оборота за 60c.

- 3. Номинальный ток магнитоэлектрического амперметра Ih = 10 A. При изменении тока I=Ih ток в измерительной катушке $Ik = 5 \cdot 10^{-3} A$, а напряжение на зажимах амперметра Ua = 75 мB. Определить сопротивление шунта. Найти верхний предел измерения тока, напряжение на амперметра и сопротивление шунта, который устанавливают вместо основного при шунтирующем коэффициенте (множителе) Pu = 1000; Pu = 4000.
 - 4. Выполнить перевод чисел 17 и 37 из десятичной счисления в двоичную.

ВАРИАНТ 9

Дать ответы на вопросы

- 1. Измерительно-информационные системы (ИИС). Структура ИИС. Государств система приборов (ГСП).
- 2. Измерение сопротивления изоляции установки, находящейся под рабочее напряжением. Ответ поясните приведением схем измерения.
- 3. Устройство принцип работы электродинамического ферродинамического частотомеров.

Решить задачи

- 1. Определить напряжение на сопротивлении R2 и наибольшую возможную относительную погрешность при его определения (рисунок 6), если напряжение сети равно 220. В, напряжение на сопротивлении R1 равно U1 = 180 В. Для измерений используются вольтметры класса точности 1,0 на 250В.
- 2. На каждый киловатт-час израсходованной энергии диск однофазного счетчика делает 2500 оборотов. При некоторой нагрузке диск счётчика сделал 125 оборотов за 10 мин. Определить коэффициент мощности электроприемника, если его ток 3 А, напряжение 127 В. Определить стоимость электроэнергии, израсходованной месяц, электроприемники в режиме по условию задачи работал 8 ч/сут., остальное время нагрузка уменьшалась вдвое. Стоимость электроэнергии 4 коп. за 1 КВт*ч.
- 3. Определить амперметров трех систем в цепи (рисунок 7) для трех случаев измерения тока i(t), графики которых изображены на рисунке 8 (a, б, в) $I_M = 5$ A.
- 4. Выполнить перевод чисел 13 и 42 или десятичной системы счисления в двоичную.

ВАРИАНТ 10

Дать ответы вопросы

- 1. Опишите метод амперметра и вольтметра и измерители сопротивления при измерении
- 2. Каково назначение, устройство, режим работы и применение измерительного трансформатора тока? Погрешности измерительного трансформатора тока и его векторная диаграмма.

3. Нарисуйте структурную схему регулирующего прибора и поясните назначение основных узлов. Каковы методы регистрации измеряемой величины? Как работают регистрирующие устройства?

Решить задачи

- 1. Для измерения затраты энергии печью сопротивления в течении суток произвели замеры напряжения сети 217 В вольтметром на номинальное напряжение 250 В класса. точности 1,5 и тока 94 А амперметром 200 А класса точности 2,5. Определить количество израсходованной энергии, наибольшее возможные абсолютную и относительную погрешности при ее измерении, если время измеряется с точностью до 3 мин.
- 2. В сеть трехфазного тока включен приемник, соединенный треугольником (рисунок 9). Сопротивление на фазу: R = 24 Ом, XL = 32 Ом. Определить показания ваттметров и активную мощность, потребляемую приемником, если линейные напряжения Uab = Ubc = Uca = 220 В Uп. Построить векторную диаграмму, поясняющую работу ваттметров.
- 3. Для измерения сопротивлений резисторов используют измерительный мост постоянного тока (рисунок 10). Определить сопротивление резистора Rx, если мост был уравновешен при = 125 Ом, R2 = 250 Оm, R3 = 75 Ом.
- 4. Выполнить перевод чисел 1010101 и 1111 из двоичной системы счисления в десятичную.

ВАРИАНТ 11

Дать ответы на вопросы

- 1. История развития науки электрических измерений. Роль значение измерений в науке и технике. Задачи развития электроизмерительной техники.
- 2. Опишите устройство работу измерительного механизма электромагнитной системы. Выражение величины угла отклонения подвижной части. Достоинства и недостатки, область применения приборов электромагнитной системы.
- 3. Нарисуйте структурную схему регулирующего прибора и поясните назначение основных узлов. Каковы методы регистрации измеряемой величины? Как работают регистрирующие устройства?

- 1. Для измерения затраты энергии печью сопротивления в течении суток произвели замеры напряжения сети 217 В вольтметром на номинальное напряжение 250 В класса. точности 1,5 и тока 94 А амперметром 200 А класса точности 2,5. Определить количество израсходованной энергии, наибольшее возможные абсолютную и относительную погрешности при ее измерении, если время измеряется с точностью до 3 мин.
- 2. В сеть трехфазного тока включен приемник, соединенный треугольником (рисунок 9). Сопротивление на фазу: R = 24 Ом, XL = 32 Ом. Определить показания ваттметров и активную мощность, потребляемую приемником, если линейные

напряжения Uab = Ubc = Uca = 220 B Uп. Построить векторную диаграмму, поясняющую работу ваттметров.

- 3. Имея ваттметр, вольтметр и амперметр, требуется измерить взаимную индуктивность двух катушек. Была собрана соответствующая схема. При одном варианте последовательного соединения катушек приборы показали 4 A, 20 B, 48 Bт, а при другом варианте последовательного соединения катушек приборы показали 3 A, 27 Bт. Частота источника питания 50 Гц. Определить взаимную индуктивность катушек. Начертить схему измерения.
- 4. Выполнить перевод чисел 1000 и 1110 из двоичной системы счисления в десятичную.

ВАРИАНТ 12

Дать ответы на вопросы

- 1. Каковы причины возникновения погрешностей при измерении? Дайте определение приведите формулы для вычисления абсолютной, относительной, приведенной погрешностей, поправки, вариации показаний.
- 2. Измерение сопротивления изоляции установки, находящейся под рабочее напряжением. Ответ поясните приведением схем измерения.
- 3. Устройство принцип работы электродинамического ферродинамического частотомеров.

- 1. Определить напряжение на сопротивлении R2 и наибольшую возможную относительную погрешность при его определения (рисунок 6), если напряжение сети равно 220. В, напряжение на сопротивлении R1 равно U1 = 180 В. Для измерений используются вольтметры класса точности 1,0 на 250В.
- 2. На каждый киловатт-час израсходованной энергии диск однофазного счетчика делает 2500 оборотов. При некоторой нагрузке диск счётчика сделал 125 оборотов за 10 мин. Определить коэффициент мощности электроприемника, если его ток 3 А, напряжение 127 В. Определить стоимость электроэнергии, израсходованной месяц, электроприемники в режиме по условию задачи работал 8 ч/сут., остальное время нагрузка уменьшалась вдвое. Стоимость электроэнергии 4 коп. за 1 КВт*ч.
- 3. Определить удельные потери в стали сердечника катушки и магнитную индукцию, если катушка имеет 200 витков с активным сопротивлением 0,3 Ом. При измерении приборы показали: 300 Вт; 1,5 А; 100 В. Сопротивление вольтметра и параллельной цепи ваттметра по 3000 Ом, амперметра и последовательной катушки ваттметра по 0,5 Ом. Сердечник весит 2 кг, его размеры 40мм х 40мм.
- 4. Выполнить перевод чисел 13 и 49 десятичной системы счисления в двоичную.

BAPHAHT 13

Дать ответы вопросы

- 1. Приведите классификацию методов измерения, поясните каждый из методов, литья их сравнительную оценку.
- 2. Опишите работу омметра, показания которого зависят от напряжения источника питания.
- 3. Перечислите общие узлы в детали конструкции электромеханических аналоговых приборов, поясните их конструкцию назначение.

Решить задачи

- 1. Термоэлектрический пирометр XA для измерения температуры печи отрегулирован для работы при температуре окружающей среды 10° C. Температура окружающей среды возросла до 40° C. Определить действительную температуру печи, если показания пирометра 400° C.
- 2. На щитке счетчика написано: 120 B; 5 A; 1 ГВт•ч 500 оборотов диска. Определить номинальную постоянную счетчика, абсолютную и относительную погрешности, поправочный коэффициент, если при проверке счетчика при постоянной величине напряжения U = 120 B и тока I = 4 A диск счетчика сделал 42 оборота за 60с.
- 3. Напряжение цепи (рисунок 3) изменяется по закону, график которого изображен на рисунке 4. Определить показания вольтметров V1 и V2, если имеем приборы электродинамической системы. Сопротивление xc "R".
- 4. Выполнить перевод чисел 1001 и 11100 из двоичной системы счисления в десятичную.

ВАРИАНТ 14

Дать ответы на вопросы

- 1. Опишите устройство работу измерительного механизма магнитоэлектрической системы. Выражение величины угла отклонения подвижной части. Достоинства и недостатки, область применения приборов магнитоэлектрической системы.
- 2. Измерение реактивной мощности трехфазных трех- и четырехпроводных цепях. Приведите схемы включения приборов, векторные диаграммы и аналитические обоснования.
 - 3. Понятие об устройстве и принципы действия электронных вольтметров.

- 1. Амперметр, сопротивление которого Ra=0.3~Om, имеет шкалу в 150 делений и постоянную Ca~0.001~A/дел. Определить сопротивление шунта при помощи которого можно было бы измерить ток до 300 A.
- 2. Определить длину контрольного кабеля в медными жилами сечением 2,5 мм2 от трансформатора тока с номинальным сопротивлением 0,5 Ом к приборам:

амперметру электромагнитной системы и электродинамическому ваттметру, сопротивление обмоток которых составляет соответственно 0,06 Ом 0,25 Ом.

- 3. Для термопары XA (хромель-алюмель) определить показания прибора термо-ЭДС при измерении температуры 400° C, если свободные концы термопары находятся в помещении, имеющем температуру 20° C.
- 4. Выполнить перевод чисел 10 н 23 из десятичной системы счисления в дво-ичную.

ВАРИАНТ 15

Дать ответы на вопросы

- 1. Опишите устройство работу измерительного механизма электродинамической системы. Выражение величины угла отклонения подвижной части. Достоинства и недостатки, область применения приборов электродинамической системы.
- 2. Приведите две схемы измерения сопротивлений методом амперметра и вольтметра, сделайте вывод о применении этих схем.
 - 3. Кодирующие преобразователи в цифровых измерительных приборах.

- 1. Определить относительную погрешность, допускаемую при измерении мощности потерь в стали сердечника катушки (рисунок 5) без учета потерь в приборах. Показания приборов: 100 В; 2,5 А, 28 Вт. Сопротивление вольтметра 5000 Ом, сопротивление катушек ваттметра: последовательной 0,1 Ом; параллельной 1500 Ом. Активное сопротивление исследуемой катушке 0,8 Ом.
- 2. В трехпроводную сеть трехфазного тока включены амперметры на 5 A, вольтметры на 100 B два однофазных ваттметра на 5 A 150 B со шкалой на 150 делений через трансформаторы тока 200/5 трансформаторы напряжения 6000/100. Определить мощность нагрузки и показания ваттметров в делениях шкалы, если показания вольтметров по 95 B, амперметров 4,2 A, а коэффициент мощности нагрузки 0,8. Начертить схему включения приборов.
- 3. Сопротивление изоляции двухпроводной линии, работающей под напряжением 120 В, измерялось вольтметром с внутренним сопротивлением 36 кОм. Напряжение между каждым проводом землей оказалось соответственно U1 = 25 В, U2 = 60 В. Определить значение сопротивления изоляции на землю оценить качество изоляции.
- 4. Выполнить перевод чисел 1011 и 101011 из двоичной системы счисления в десятичную.

Дать ответы на вопросы

- 1. Каково устройство принцип действия индукционного счетчика активной энергии? Приведите схему включения счетчика активной энергии в однофазную сеть. Определение погрешностей счетчика.
 - 2. Определение потерь в стали ваттметровым методом.
 - 3. Что изучает метрология?

Решить задачи

- 1. Для измерения активной мощности, равной 6 кВт, трехфазной симметричной цепи с фазным напряжением 127В и соз f 0.8 использованы два одинаковых ваттметра электродинамической системы со школами на 150 делений. Составить схему измерения, подобрать ваттметры по току и напряжению, определить показания каждого ваттметра, нарисовать в масштабе векторную диаграмму токов и напряжений.
- 2. Для измерения сопротивления R были измерены ток I в этом сопротивлении с относительной погрешностью 1% мощность потерь в нем P с относительной погрешностью 1,5%. Вычислить наибольшую возможную относительную погрешность при измерении сопротивления R.
- 3. Определить емкость конденсатора, если при измерении методом баллистического гальванометра были получены следующие результаты: при включении на известную емкость С 3000 пФ, заряженную до напряжения = 150 B, а = 30 делений, а при включении на измеряемую емкость, заряженную до напряжения U2 = 120 B, а2 = 40 делений. Привести схему измерения.
- 4. Выполнить перевод чисел 98 13 из десятичной системы счисления в двоичную.

ВАРИАНТ 17

Дать ответы на вопросы

- 1. Каково назначение, применение, устройство режимы работы измерительного трансформатора напряжения. Погрешность и векторная диаграммы измерительного трансформатора напряжения.
- 2. Измерение активной энергии в трехфазной цепи. Двух- и трехэлементный счетчик активной энергии, схемы их включения в сеть.
- 3. Каково назначение н конструктивное исполнение шунтов и добавочных сопротивлений?

Решить задачи

1. Для измерения напряжения 220 В взяты два вольтметра, соединенные последовательно. Первый вольтметр на 150 В с внутренним сопротивлением 12 кОм, второй - на 120 В с внутренним сопротивлением 10 кОм. Определить показания

каждого вольтметра и наибольшее возможные относительную абсолютную погрешности показаний, если оба вольтметра класса 0,5. Вычислить мощность, потребляемую каждым прибором при данном измерении.

- 2. При измерении сопротивления изоляции проводов двухпроводной линии относительно земли вольтметром с сопротивлением 30 кОм были получены следующие показания приборов: напряжение сети 220 В, напряжение между первым проводом и землей 20 В, между вторым проводом землей 50 В. Определить величину сопротивления качество изоляции. Составить схемы измерения.
- 3. При подключении катушки индуктивности к источнику постоянного тока амперметр показал I=12 A, вольтметр U=24 B. При подключение в сеть переменного тока с частотой 50 Γ ц показания стали: I=2 A, U=24 B. Определить индуктивность катушки.
- 4. Выполнить перевод чисел 11 и 111001 двоичной системы счисления в десятичную.

ВАРИАНТ 18

Дать ответы на вопросы

- 1. Как с помощью двух одноэлементных ваттметров измерить активную мощность в цепях трехфазного тока?
- 2. Опишите работу омметра, показания которого зависят от напряжения источника питания.
- 2. Принцип действия, свойства и область применения тепловых измерительных преобразователей при измерении электрических величин.
- 3. Приведите схему и опишите, каким образом определяется место повреждения кабеля методом петли Муррея.

- 1. Расширение предела измерения электростатического вольтметра осуществляется по схеме (рисунок 2). Определить величину добавочной емкости, если предел измерений вольтметра на 1,5 к. необходимо расширить 15 кв, емкость вольтметра 3 10 мкФ.
- 2. Активная мощность, подводимая к трехфазному асинхронному двигателю, измерялась по методу двух ваттметров. При номинальной нагрузке двигателя стрелки обоих ваттметров отклонялись в одну н ту же сторону, при этом первый ваттметр показывал P = 1274 Вт, второй P2 = 589 Вт. При уменьшении нагрузки двигателя первый ваттметр показывал P1` = 571 Вт, а второй ваттметр P2` = 0. Когда с двигателя сняли нагрузку и он стал работать вхолостую, то первый ваттметр показал P1` = 550 Вт, а стрелка второго ваттметра отклонилась в обратную сторону; после переключения концов параллельной обмотки второй ваттметр показал P2" = 23Вт. Определить для трех случаев активную мощность, подводимую к двигателю, (угол сдвига фаз между током напряжением, коэффициент мощности) и реактивную мощность.
- 3. Номинальный ток магнитоэлектрического амперметра IH = 10 A. При изменении тока I=IH ток в измерительной катушке $IK = 5 \cdot 10^{\circ} 3 A$, а напряжение на зажи-

мах амперметра Ua = 75 мВ. Определить сопротивление шунта. Найти верхний предел измерения тока, напряжение на амперметра и сопротивление шунта, который устанавливают вместо основного при шунтирующем коэффициенте (множителе) Рш = 1000; Рш = 4000.

4. Выполнить перевод чисел 17 и 37 из десятичной счисления в двоичную.

ВАРИАНТ 19

Дать ответы на вопросы

- 1. Измерительно-информационные системы (ИИС). Структура ИИС. Государств система приборов (ГСП).
- 2. Цифровые измерительные приборы (ЦИП). Общие сведения о цифровых приборах. Обобщенная функциональная схема ЦАП, назначение основных узлов ее. Системы счисления, коды.
- 3. Компенсационный метод измерения ЭДС. Приведите схему измерения ЭДС и поясните ее работу.

Решите задачи

- 1. Амперметр со шкалой на 5 А сопротивлением 0,6 Ом зашунтирован для измерения тока большой величины. При измерении тока 90 А стрелка прибора остановилась против деления 3,6 А. Определите сопротивление шунта и предел измерения зашунтированного амперметра.
- 2. На щитке счетчика написано: 220 B, 5 A, 1 Квт•ч 2200 оборотов диска. Вычислить номинальную постоянную счетчика, действительную постоянную, относительную погрешность, (поправочный коэффициент), если при поверке счетчика при неизменном напряжение U = 220~B и неизменной величине тока I = 5~A диск счетчика сделал N=37 оборотов за 60~c.
- 3. Определить амперметров трех систем в цепи (рисунок 7) для трех случаев измерения тока i(t), графики которых изображены на рисунке 8 (a, б, в) $I_M = 5$ A.
- 4. Выполнить перевод чисел 13 и 42 или десятичной системы счисления в двоичную.

ВАРИАНТ 20

Дать ответы вопросы

- 1. Опишите метод амперметра и вольтметра и измерители сопротивления при измерении
- 2. Опишите устройство работу измерительного механизма электромагнитной системы. Выражение величины угла отклонения подвижной части. Достоинства и недостатки, область применения приборов электромагнитной системы.
- 3. Нарисуйте структурную схему электронно-лучевого осциллографа опишите назначение основных его узлов.

Решите задачи

- 1. Определить чувствительность по напряжению магнитоэлектрического прибора на 5 мА с внутренним сопротивлением на 10 Ом и шкалой на 100 делений. Найти сопротивление прибора, чтобы при той же чувствительности по току чувствительность по напряжению составила 4 дел/мВ.
- 2. В сеть однофазного тока через трансформатор тока 500/5 и трансформатор напряжения 6000/100 (рисунок 1) включены приборы: амперметр, вольтметр, ваттметр. Определить ток I1 напряжение U1, активную мощность P цепи коэффициент мощности цепи соз ф, если показание амперметра I2 = 4 A, вольтметра U2 = 100 B, ваттметра 350 Bт.
- 3. Для измерения сопротивлений резисторов используют измерительный мост постоянного тока (рисунок 10). Определить сопротивление резистора Rx, если мост был уравновешен при = 125 Om, R2 = 250 Om, R3 = 75 Om.
- 4. Выполнить перевод чисел 1010101 и 1111 из двоичной системы счисления в десятичную.

ВАРИАНТ 21

Дать ответы на вопросы

- 1. Каково устройство принцип действия индукционного счетчика активной энергии? Приведите схему включения счетчика активной энергии в однофазную сеть. Определение погрешностей счетчика.
- 2. Приведите две схемы измерения сопротивлений методом амперметра и вольтметра, сделайте вывод о применении этих схем.
- 3. Приведите схему и опишите, каким образом определяется место повреждения кабеля методом петли Муррея.

- 1. Расширение предела измерения электростатического вольтметра осуществляется по схеме (рисунок 2). Определить величину добавочной емкости, если предел измерений вольтметра на 1,5 к. необходимо расширить 15 кв, емкость вольтметра 3 $10~{\rm Mk\Phi}$.
- 2. Активная мощность, подводимая к трехфазному асинхронному двигателю, измерялась по методу двух ваттметров. При номинальной нагрузке двигателя стрелки обоих ваттметров отклонялись в одну н ту же сторону, при этом первый ваттметр показывал P = 1274 Вт, второй P2 = 589 Вт. При уменьшении нагрузки двигателя первый ваттметр показывал P1` = 571 Вт, а второй ваттметр P2` = 0. Когда с двигателя сняли нагрузку и он стал работать вхолостую, то первый ваттметр показал P1` = 550 Вт, а стрелка второго ваттметра отклонилась в обратную сторону; после переключения концов параллельной обмотки второй ваттметр показал P2" = 23Вт. Определить для трех случаев активную мощность, подводимую к двигателю, (угол сдвига фаз между током напряжением, коэффициент мощности) и реактивную мощность.

- 3. Определить амперметров трех систем в цепи (рисунок 7) для трех случаев измерения тока i(t), графики которых изображены на рисунке 8 (a, б, в) $I_M = 5$ A.
- 4. Выполнить перевод чисел 13 и 42 или десятичной системы счисления в двоичную.

Дать ответы на вопросы

- 1. Как с помощью двух одноэлементных ваттметров измерить активную мощность в цепях трехфазного тока?
- 2. Опишите работу омметра, показания которого зависят от напряжения источника питания.
 - 3. Что изучает метрология?

Решить задачи

- 1. Для измерения активной мощности, равной 6 кВт, трехфазной симметричной цепи с фазным напряжением 127В и соѕ f 0.8 использованы два одинаковых ваттметра электродинамической системы со школами на 150 делений. Составить схему измерения, подобрать ваттметры по току и напряжению, определить показания каждого ваттметра, нарисовать в масштабе векторную диаграмму токов и напряжений.
- 2. Для измерения сопротивления R были измерены ток I в этом сопротивлении с относительной погрешностью 1% мощность потерь в нем P с относительной погрешностью 1,5%. Вычислить наибольшую возможную относительную погрешность при измерении сопротивления R.
- 3. Определить амперметров трех систем в цепи (рисунок 7) для трех случаев измерения тока i(t), графики которых изображены на рисунке 8 (a, б, в) $I_M = 5$ A.
- 4. Выполнить перевод чисел 13 и 42 или десятичной системы счисления в двоичную.

ВАРИАНТ 23

Дать ответы на вопросы

- 1. Каковы причины возникновения погрешностей при измерении? Дайте определение приведите формулы для вычисления абсолютной, относительной, приведенной погрешностей, поправки, вариации показаний.
- 2. Цифровые измерительные приборы (ЦИП). Общие сведения о цифровых приборах. Обобщенная функциональная схема ЦАП, назначение основных узлов ее. Системы счисления, коды.
- 3. Каково назначение н конструктивное исполнение шунтов и добавочных сопротивлений?

- 1. Для измерения напряжения 220 В взяты два вольтметра, соединенные последовательно. Первый вольтметр на 150 В с внутренним сопротивлением 12 кОм, второй на 120 В с внутренним сопротивлением 10 кОм. Определить показания каждого вольтметра и наибольшее возможные относительную абсолютную погрешности показаний, если оба вольтметра класса 0,5. Вычислить мощность, потребляемую каждым прибором при данном измерении.
- 2. При измерении сопротивления изоляции проводов двухпроводной линии относительно земли вольтметром с сопротивлением 30 кОм были получены следующие показания приборов: напряжение сети 220 В, напряжение между первым проводом и землей 20 В, между вторым проводом землей 50 В. Определить величину сопротивления качество изоляции. Составить схемы измерения.
- 3. Для термопары XA (хромель-алюмель) определить показания прибора термо-ЭДС при измерении температуры 400° C, если свободные концы термопары находятся в помещении, имеющем температуру 20° C.
- 4. Выполнить перевод чисел 10 н 23 из десятичной системы счисления в дво-ичную.

Дать ответы на вопросы

- 1. Каково устройство принцип действия индукционного счетчика активной энергии? Приведите схему включения счетчика активной энергии в однофазную сеть. Определение погрешностей счетчика.
 - 2. Определение потерь в стали ваттметровым методом.
 - 3. Кодирующие преобразователи в цифровых измерительных приборах.

- 1. Определить относительную погрешность, допускаемую при измерении мощности потерь в стали сердечника катушки (рисунок 5) без учета потерь в приборах. Показания приборов: 100 В; 2,5 А, 28 Вт. Сопротивление вольтметра 5000 Ом, сопротивление катушек ваттметра: последовательной 0,1 Ом; параллельной 1500 Ом. Активное сопротивление исследуемой катушке 0,8 Ом.
- 2. В трехпроводную сеть трехфазного тока включены амперметры на 5 A, вольтметры на 100 В два однофазных ваттметра на 5 A 150 В со шкалой на 150 делений через трансформаторы тока 200/5 трансформаторы напряжения 6000/100. Определить мощность нагрузки и показания ваттметров в делениях шкалы, если показания вольтметров по 95 В, амперметров 4,2 A, а коэффициент мощности нагрузки 0,8. Начертить схему включения приборов.
- 3. При подключении катушки индуктивности к источнику постоянного тока амперметр показал I=12 A, вольтметр U=24 B. При подключение в сеть переменного тока с частотой 50 Γ ц показания стали: I=2 A, U=24 B. Определить индуктивность катушки.
- 4. Выполнить перевод чисел 11 и 111001 двоичной системы счисления в десятичную.

Дать ответы на вопросы

- 1. Опишите устройство работу измерительного механизма электродинамической системы. Выражение величины угла отклонения подвижной части. Достоинства и недостатки, область применения приборов электродинамической системы.
 - 2. Определение потерь в стали ваттметровым методом.
 - 3. Понятие об устройстве и принципы действия электронных вольтметров.

- 1. Амперметр, сопротивление которого Ra = 0,3 Ом, имеет шкалу в 150 делений и постоянную Ca 0,001 A/дел. Определить сопротивление шунта при помощи которого можно было бы измерить ток до 300 A.
- 2. Определить длину контрольного кабеля в медными жилами сечением 2,5 мм2 от трансформатора тока с номинальным сопротивлением 0,5 Ом к приборам: амперметру электромагнитной системы и электродинамическому ваттметру, сопротивление обмоток которых составляет соответственно 0,06 Ом 0,25 Ом.
- 3. Определить удельные потери в стали сердечника катушки и магнитную индукцию, если катушка имеет 200 витков с активным сопротивлением 0,3 Ом. При измерении приборы показали: 300 Вт; 1,5 А; 100 В. Сопротивление вольтметра и параллельной цепи ваттметра по 3000 Ом, амперметра и последовательной катушки ваттметра по 0,5 Ом. Сердечник весит 2 кг, его размеры 40мм х 40мм.
- 4. Выполнить перевод чисел 13 и 49 десятичной системы счисления в двоичную.