МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ БЕЛАРУСЬ ГОСУДАРСТВЕННОЕ ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЭЛЕКТРОЭНЕРГЕТИКИ «БЕЛЭНЕРГО» УО «МИНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ КОЛЛЕДЖ»

УТВЕРЖДАЮ Директор УО МГЭК А.А. Новиков «16» 12 2020 год

ТЕХНИЧЕСКАЯ МЕХАНИКА

Методические указания по выполнению домашней контрольной работе для учащихся заочной формы получения образования

2-70 02 01 «Промышленное и гражданское строительство» (шифр и название специальности)

Разработал преподаватель	Паше —	В.Н. Калинина (ФИО)		
Рассмотрено и одобрено на заседании	и цикловой комиссии			
общетехниче	ских дисциплин			
(наименование г	цикловой комиссии)			
Протокол № от <u></u>	<u>20</u> г.			
Председатель цикловой комиссии	(подпись)	Е.Н.Никель (ФИО)		
Согласовано Методист колледжа	(подпись)	О.В. Какорина (ФИО)		
Заведующий заочным отделением	(nomice)	А.А. Куцов (ФИО)		

Содержание

1. Пояснительная записка	3
2. Краткое содержание программы	5
3. Вопросы для самоконтроля	7
4. Общие требования по оформлению домашних контрольных работ	11
5. Задание для ДКР-1	12
6. Задание для ДКР-2	27
7. Оценка результатов учебной деятельности при выполнении дом контрольных работ	
8. Литература	47
Приложения	48

1 Пояснительная записка

Методические указания по изучению учебной дисциплины «Техническая механика» и выполнению домашних контрольных работ разработаны в соответствии с образовательным стандартом среднего специального образования для специальности 2-70 02 01 «Промышленное и гражданское строительство».

Дисциплина «Техническая механика» является частью профессионального компонента общепрофессиональных дисциплин цикла.

Цели изучения учебной дисциплины «Техническая механика:

обучающая:

- формирование основных знаний и навыков в области расчета элементов конструкций на прочность, жесткость и устойчивость,
- формирование знаний о способах образования различного вида геометрически неизменяемых систем и методах их статического расчета;

воспитывающая:

- формирование стремления к саморазвитию, повышению квалификации и мастерства,
- формирование убеждений социальной значимости своей будущей профессии;

развивающая:

- способствовать развитию технического мышления, умению составить расчетную схему сооружения,
- способствовать профессиональному и личностному развитию (самостоятельно работать, осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач).

Учебная дисциплина «Техническая механика» является теоретической изучения базой смежных специальных дисциплин: «Строительные «Строительные машины», «Технология конструкции», строительного производства» и др., а также курсового и дипломного проектирования, и чтобы предназначен для τογο, дать будущим техникам-строителям необходимые знания и умения для профессиональной деятельности.

Для закрепления теоретического материала и формирования у учащихся необходимых умений и навыков программой предусмотрено проведение практических и лабораторных работ.

Для контроля усвоения программного учебного материала предусмотрено выполнение двух домашних контрольных работ, тематика которых определяется и утверждается цикловой комиссией учреждения образования.

Для итогового контроля знаний учащихся учебным планом предусмотрено проведение экзамена, перечень вопросов и типовые задачи для которого, определяются и утверждаются цикловой комиссией учреждения образования.

В результате изучения дисциплины «Техническая механика» учащиеся должны приобрести соответствующие знания и умения:

на уровне представления:

- 1) основные сведения о расчетных схемах, способах их получения;
- 2) условия равновесия тел;

на уровне понимания:

- 1) владеть понятиями видов нагружения;
- 2) различать виды напряжения;

уметь:

- 1) определять реакции связей;
- 2) рассчитать элементы конструкций на прочность, на жесткость и на устойчивость;
- 3) знать способы образования различного вида геометрически неизменяемых систем и методов их расчета.

2 Краткое содержание программы

Учебная дисциплина «Техническая механика» изучается в соответствии с учебным планом и программой в количестве 146 часов.

Введение. Содержание предмета и его связь с другими предметами. Роль и значение механики.

- Раздел I. Статика.
- Тема 1.1. Основные понятия и аксиомы статики.
- Тема 1.2. Плоская система сходящихся сил (ПССС). Методика решения задач на равновесие ПССС.
 - Тема 1.3. Пара сил. Условие и уравнение равновесия системы пар сил.
- Тема 1.4. Плоская система произвольно-расположенных сил (ПСПРС). Методика решения задач на равновесие ПРСПРС.
 - Тема 1.5. Пространственная система сил. Уравнения равновесия.
- Тема 1.6. Центр тяжести. Определение центра тяжести сложных составных сечений.
 - Тема 1.7. Устойчивость равновесия твёрдых тел.
 - Раздел II. Сопротивление материалов.
- Тема 2.1. Основные положения сопромата. Растяжение и сжатие. Эпюры «N» и « σ ».
- Тема 2.2. Механические испытания материалов. Три вида расчетов на прочность.
 - Тема 2.3. Расчеты на срез и смятие.
 - Тема 2.4. Геометрические характеристики плоских сечений.
- Тема 2.5. Изгиб прямого бруса. Внутренние силовые факторы (ВС Φ) при изгибе.
 - Тема 2.6. Косой изгиб и внецентренное растяжение-сжатие.
 - Тема 2.7. Кручение брусьев круглого сечения.
- Тема 2.8. Понятие о действии динамических и повторно-переменных нагрузок.
 - Раздел III. Статика сооружений.
 - Тема 3.1. Основные положения статики сооружений.
- Тема 3.2. Исследование геометрической структуры плоских систем сооружения.
 - Тема 3.3. Статически определимые плоские формы.

- Тема 3.4. Многопролётные статически определимые шарнирные балки (МШБ).
 - Тема 3.5. Статически определимые плоские рамы.
 - Тема 3.6. Трёхшарнирные арки.
- Тема 3.7. Определение перемещений в статические определимых плоских системах.
 - Тема 3.8. Основы расчёта статически неопределимых систем.

3 Вопросы для самоконтроля

Статика.

- 1. Понятие силы. Аксиомы статики.
- 2. Классификация нагрузок.
- 3. Связи и их реакции.
- 4. Сложение двух сходящихся сил.
- 5. Разложение силы на две составляющие.
- 6. Графическое определение равнодействующей сходящихся сил.
- 7. Проекция силы на ось координат.
- 8. Аналитическое определение равнодействующей сходящихся сил.
- 9. Случай трех непараллельных сил (теорема).
- 10. Графическое условие равновесия сходящихся сил и применение его к решению задач.
- 11. Аналитическое условие равновесия сходящихся сил и применение его к решению задач.
 - 12. Пара сил, условие равновесия пар.
 - 13. Момент силы относительно точки, свойства момента силы.
- 14. Приведение плоской системы произвольно расположенных сил к центру. Частные случаи приведения.
 - 15. Теорема о моменте равнодействующей.
- 16. Условие равновесия плоской систем произвольно расположенных сил. Три вида уравнений статики.
 - 17. Центр тяжести и методы его определения.
 - 18. Центр тяжести простых геометрических фигур.
- 19. Определение центра тяжести сложных фигур геометрической формы.
- 20. Определение центра тяжести сечений, составленных из прокатных профилей.
 - 21. Устойчивость равновесия сил на плоскости.

Сопротивление материалов.

- 1. Понятие о прочности, жесткости и устойчивость.
- 2. Понятие о пластичных и хрупких материалах.
- 3. Виды деформаций.
- 4. Основные допущения сопромата.
- 5. Внутренние силовые факторы (ВСФ) и виды нагружения.
- 6. Напряжение: нормальное (σ) и касательное (τ).
- 7. Растяжение и сжатие. Понятие о продольной силе (N).

- 8. Нормальное напряжение в поперечных сечениях бруса.
- 9. Эпюры продольных сил N и нормальных напряжений σ, порядок их построений и проверки.
 - 10. Закон Гука при растяжении и сжатии, определение деформаций.
 - 11. Механические испытания материалов.
 - 12. Диаграмма растяжения и сжатия малоуглеродистой стали.
 - 13. Понятие о наклепе.
 - 14. Понятие о ползучести и релаксации.
 - 15. Понятие об условном пределе текучести.
 - 16. Напряжение: предельное, расчетное и допускаемое.
- 17. Условие прочности при растяжении и сжатии, три вида расчетов из условия прочности:
 - 1) проектный расчет (подбор сечения),
 - 2) проверка прочности,
 - 3) определение допускаемой нагрузки.
 - 18. Влияние собственного веса на напряжение при растяжении и сжатии.
 - 19. Сдвиг. Деформации и напряжения. Закон Гука при сдвиге.
 - 20. Расчетные формулы на срез и смятие.
 - 21. Расчет на срез заклепочных соединений.
 - 22. Расчет на смятие заклепочных соединений.
 - 23. Расчет сварных соединений, выполненных встык.
 - 24. Расчет сварных соединений, выполненных внахлёст.
 - 25. Расчет деревянных сопряжений.
 - 26. Статический момент площади, его свойства.
- 27. Геометрические характеристики плоских сечений: осевой и полярный моменты инерции, их взаимозависимость.
 - 28. Момент инерции простых геометрических фигур.
 - 29. Момент инерции относительно оси, параллельной центральной.
- 30. Определение моментов инерции составного сечения относительно главных центральных осей инерции осей симметрии.
- 31. Изгиб. Понятие о поперечной силе и изгибающем моменте. Правило знаков.
 - 32. Построение эпюр Q и M методом сечений для простейших балок.
- 33. Дифференциальная зависимость между нагрузкой, поперечной силой и изгибающим моментом.
 - 34. Правила построения эпюр Q и M по характерным точкам.
- 35. Определение нормальных напряжений при изгибе, их распределение по высоте сечения.

- 36. Расчет балок на прочность при изгибе. Три вида расчета из условия прочности.
- 37. Момент сопротивления балки (W_k) , его определение для простых сечений геометрической формы.
 - 38. Понятие о наиболее рациональном сечении балки.
- 39. Определение касательных напряжений при изгибе, их распределение по высоте сечения балки.
 - 40. Расчет балок на сдвиг.
- 41. Расчет балок на жесткость с помощью готовых формул. Три типа задач.
- 42. Внецентренное растяжение и сжатие. Определение напряжений и расчет на прочность.
- 43. Ядро сечения, определение его для прямоугольного и круглого сечений при внецентренном растяжении и сжатии.
 - 44. Устойчивость сжатого стержня.
- 45. Определение критической силы сжатого стержня по формуле Эйлера и предел его применимости.
- 46. Гибкость стержня и её зависимость от способа закрепления концов стержня.
 - 47. Радиус инерции, определение его для простейших сечений.
- 48. Расчет центрального сжатого стержня на устойчивость по строительным нормам и правилам с помощью коэффициента снижения расчетного сопротивления.
- 49. Понятие о действии динамических нагрузок и пределе выносливости материала.

Статика сооружений.

- 1. Классификация сооружений и основная гипотеза их расчета.
- 2. Расчетные схемы сооружений, их классификация.
- 3. Геометрически изменяемые (ГИС) и неизменяемые системы (ГНС).
- 4. Степень свободы и кинематические связи.
- 5. Анализ геометрической структуры системы.
- 6. Понятие о статически определимых и неопределимых системах.
- 7. Понятие о мгновенно изменяемых системах (МИС).
- 8. Фермы. Общие сведения.
- 9. Анализ геометрической структуры фермы.
- 10. Основные допущения, используемые при расчете ферм.
- 11. Определение усилий в стержнях ферм методом построения диаграммы Максвелла-Кремоны.

- 12. Аналитическое определение усилий в стержнях ферм методом вырезания узлов.
 - 13. Расчет ферм методом сквозных сечений.
- 14. Многопролетные шарнирно-консольные балки (МШБ). Анализ их геометрической структуры.
 - 15. Типы МШБ и схемы взаимодействия их элементов.
 - 16. Порядок построения эпюр Q и М для МШБ
 - 17. Рамы. Общие сведения. Анализ их геометрической структуры.
- 18. Порядок построения эпюр Q, M, N для статически определимых рам, порядок проверки построения эпюр.
- 19. Понятие о статически неопределимых системах, их преимущества и недостатки.
- 20. Статически неопределимы системы при растяжении и сжатии, их расчет.
- 21. Порядок расчета статически неопределимых систем методом сил с использованием правила Верещагина.
 - 22. Неразрезные балки. Анализ их геометрической структуры.
- 23. Уравнение трех моментов и его применение к расчету неразрезной балки.

4 Общие требования по оформлению домашних контрольных работ

При выполнении работ необходимо соблюдать следующие требования:

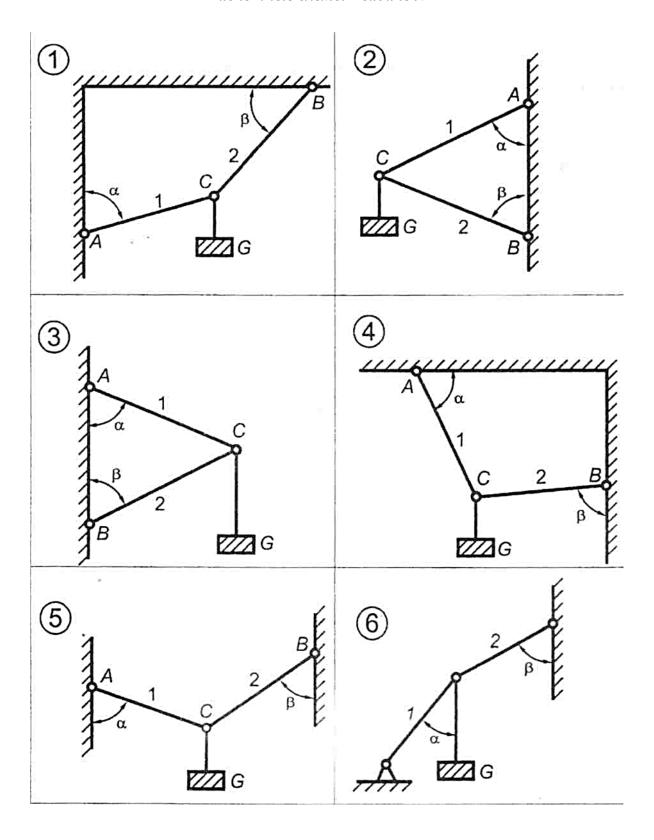
- 1. Работы выполняются строго в соответствии с вариантом. В противном случае они не засчитываются и возвращаются для переделки.
- 2. Каждую работу необходимо оформлять в отдельной тетради в клетку или на стандартных листах миллиметровки формата А4, подшитых в скоросшивателе.
- 3. На обложке тетради указать: фамилию, имя отчество, номер личного дела (шифр), наименование предмета, номер контрольной работы (ДКР-1, ДКР-2), дату отправления и точный почтовый адрес учащегося, номер варианта.
- 4. Работы оформлять четко и аккуратно, оставляя поля для пометок и замечание преподавателя.
- 5. Каждую задачу начинать с новой страницы, обязательно переписав тексты условий задач.
 - 6. В конце тетради оставлять несколько чистых страниц для рецензии.
- 7. Решение задач пояснять аккуратно выполненными схемами (эскизами), подзаголовками (с указанием, что определяется, что рассматривается) и ссылками на законы, методы, справочные данные и источники, из которых они заимствованы.
- 8. Рекомендуется задачи решать в общем виде, а затем, подставляя численные значения величин, вычислять результат.
- 9. Перед чистовым оформлением следует тщательно проверить все действия, правильность подстановки величин, соблюдение размерности, правильность ответа (сделав обязательно проверку результата).

Незачтенная работа выполняется заново или исправляется в соответствии с указаниями преподавателя.

Для допуска к экзамену учащемуся необходимо выполнить все задания для контрольных работ, сделав необходимые исправления, указанные преподавателем в рецензиях.

При решении задач следует иметь в виду, что в каждой серии задач определённого типа даны: рисунок (расчетная схема) и таблица с указанием номера варианта, номера схемы и исходные данные для данной задачи.

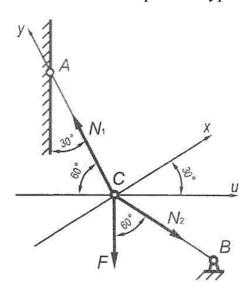
Одна и та же схема используется для нескольких последующих задач данного типа, поэтому указанный номер расчетной схемы следует вычертить в строгом соответствии с данными своего варианта.


5 Задание для домашней контрольной работы № 1

Задача №1. Определить усилия в стержнях 1, 2, вызванные действием груза. Задачу решить аналитически и графически.

Таблица данных

D	Значен	ие углов	Нагрузка	C V	
Вариант	$lpha^0$	β^0	G, H	Схема №	
1	45	30	2500	1	
2	60	45	3600	2	
3	30	60	1500	3	
4	30	45	2000	4	
5	45	30	3000	5	
6	45	60	2600	6	
7	30	45	1800	1	
8	45	30	3400	2	
9	60	45	2500	3	
10	45	30	2200	4	
11	30	45	2700	5	
12	30	45	900	6	
13	60	45	640	1	
14	45	60	700	2	
15	45	30	1100	3	
16	60	45	500	4	
17	45	60	400	5	
18	60	45	300	6	
19	45	60	1600	1	
20	60	45	1800	2	
21	30	60	2300	3	
22	30	60	1500	4	
23	60	30	2400	5	
24	45	60	1200	6	
25	45	60	2000	1	
26	30	45	1900	2	
27	30	45	1400	3	
28	45	60	1700	4	
29	30	60	1000	5	
30	60	30	2500	6	
			1		


Расчетные схемы к задаче № 1

Алгоритм и пример решения задачи № 1

Аналитическое решение:

- 1. Определяем точку равновесия узел С (точка схождения сил).
- 2. Заменяем связи реакциями, показывая их от узла, полагая, что стержни растянуты.
- 3. Выбираем систему координат так, чтобы одно из неизвестных совпадало с осью координат.
- 4. Составляем и решаем уравнения равновесия, приняв F = G = 500 H.

$$\sum X = 0; \ N_2 \cos 60^{\circ} - F \cos 60^{\circ} = 0$$
 (1)

$$\sum Y = 0; \ N_1 - N_2 \sin 60^{\circ} - F \sin 60^{\circ} = 0$$
 (2)

Из (1)
$$N_2 \cos 60^\circ = F \cos 60^\circ$$
;

$$N_2 = \frac{F\cos 60^\circ}{\cos 60^\circ};$$

$$N_2 = F = 500H.$$

Из (2)
$$N_1 = N_2 \sin 60^\circ + F \sin 60^\circ$$
;

$$N_1 = 500 \cdot 0.86 + 500 \cdot 0.86;$$

$$N_1 = 860H.$$

Знак (+) в ответах говорит о том, что стержни работают на растяжение, (-) — на сжатие.

Графическое решение:

- 1. Выбираем точку на плоскости и масштаб сил $M_f = 20 \text{ H/мм}$.
- 2. Строим силовой треугольник, перенося силы параллельно, начиная с известной силы F и замыкая их по кругу.
- 3. Определяем усилия в стержнях по длине вектора (N_1 43 мм, N_2 25 мм) с учетом выбранного масштаба \mathbf{M}_f и полученного направления.

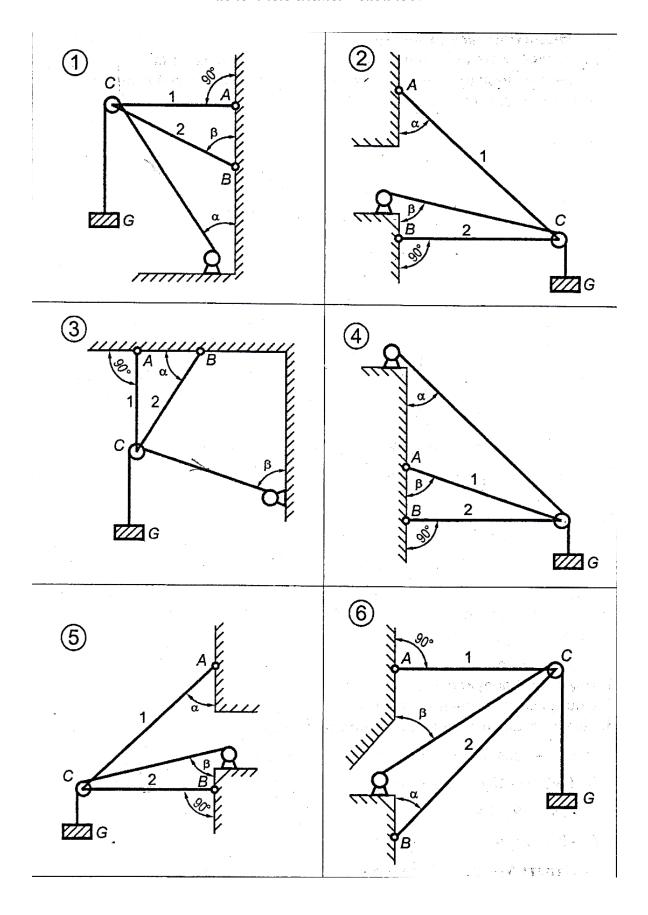
Если направления сил совпадают с первоначально выбранными, то будет знак (-), не совпадают – (-).

$$N_1 = 43M_f = 43 \cdot 20 = 860 (H);$$

 $N_2 = 25M_f = 25 \cdot 20 = 500 (H).$

Ответ: Сравнивая результаты аналитического и графического решения задачи, отмечаем, что усилия в стержнях определены правильно.

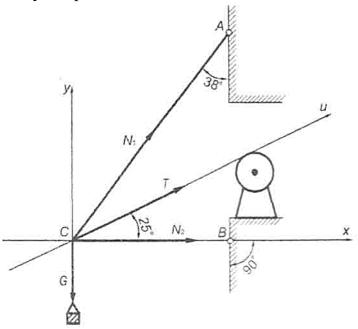
$$N_1 = 860 \text{ H (стержень растянут)};$$


$$N_2 = 500 \text{ H}$$
 (стержень растянут).

Задача №2. Определить усилия в стержнях 1, 2 крана при подъеме груза, размерами и трением в блоке пренебречь. Решить и проверить задачу аналитически.

Таблица данных

Рописит	Значені	ие углов	Нагрузка	Схема №	
Вариант	α^0	β^0	G, ĸH	CXEMA JIE	
1	40	65	25	1	
2	35	50	30	2	
3	25	68	28	3	
4	39	70	24	4	
5	48	75	36	5	
6	42	63	30	6	
7	36	57	26	1	
8	26	50	32	2	
9	38	65	34	3	
10	40	58	30	4	
11	35	55	32	5	
12	28	50	28	6	
13	40	68	26	1	
14	36	79	34	2	
15	29	51	26	3	
16	37	65	32	4	
17	28	54	30	5	
18	32	56	28	6	
19	34	70	25	1	
20	25	65	24	2	
21	39	68	32	3	
22	42	75	24	4	
23	26	54	30	5	
24	40	70	24	6	
25	35	60	28	1	
26	27	53	30	2	
27	38	72	25	3	
28	36	57	29	4	
29	41	70	34	5	
30	25	66	20	6	


Расчетные схемы к задаче $N_{\overline{2}}$ 2

Алгоритм и пример решения задачи № 2

Аналитическое решение:

- 1. Определяем точку равновесия С точку схождения сил.
- 2. Заменяем связи их реакциями (от узла полагая стержни растянутыми).
- 3. Выбираем систему координат ХҮ.

4. Составляем и решаем уравнения статики, приняв T = G = 30 кH.

$$\sum X = 0; N_1 \cos 52^\circ + N_2 + T \cos 25^\circ = 0 \tag{1}$$

$$\sum Y = 0$$
; $N_1 \cos 38^\circ + T \cos 65^\circ - G = 0$ (2)
 Из (2)

$$N_1 = \frac{-T\cos 65^{\circ} + G}{\cos 38^{\circ}} = \frac{-30 \cdot 0,42 + 30}{0,79} = 22 (кH) - стержень растягивается.$$

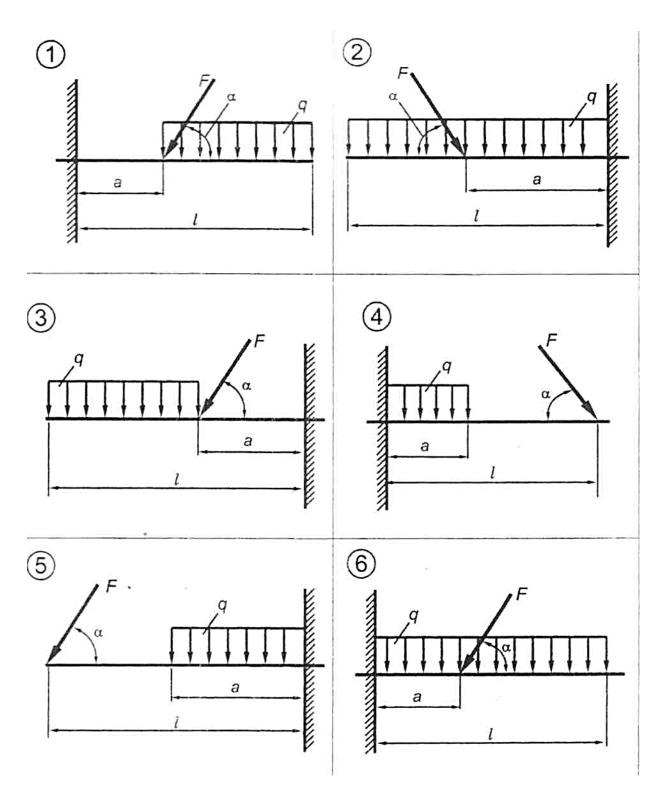
Из(1)

$$N_2 = -T\cos 25^\circ - N_1\cos 52^\circ = -30\cdot 0,9 - 22\cdot 0,62 = -40,6$$
 (кH) – стержень сжимается, т. к. знак (-).

Проверка:

- 1. Выбираем новую ось U.
- 2. Составляем уравнение статики.
- 3. Подсчитаем полученные результаты и убедимся в правильности решения:

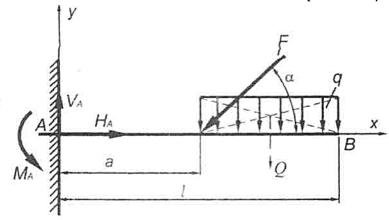
 $\sum U = 0$ – верно!


Ответ: $N_1 = 22$ кН (стержень растянут), $N_2 = -40,6$ кН (стержень сжат).

Задача №3. Определить реакции заделки.

Таблица данных

Danwaren	V-0 00	Расст	Расстояние		рузка	Схема
Вариант	Угол a^0	<i>l</i> ,m	a,m	<i>F</i> , кH	<i>q</i> , κH/m	№
1	30	1	2	2,5	2	1
2	45	1,5	3	3,0	2,5	2
3	60	2	3,5	2,8	1	3
4	45	2,5	4	2,4	1	4
5	30	2	2,5	3,6	2	5
6	60	1	1,5	3,0	5	6
7	45	0,5	2	2,6	2	1
8	30	1	2,5	3,2	1,5	2
9	45	2	3	3,4	2	3
10	30	1,5	2,5	3,0	1	4
11	45	0,5	2	3,2	4	5
12	45	2	4,5	2,8	2	6
13	45	0,5	3	2,6	0,5	1
14	60	1	1,5	3,4	1,5	2
15	30	0,5	2	2,6	0,5	3
16	45	1,5	4,5	3,2	2	4
17	60	4,5	5	3,0	3	5
18	45	2	4,5	2,8	1	6
19	60	3	5	2,5	2	1
20	45	1	4	2,4	3	2
21	60	2,5	3	3,2	2	3
22	60	3,5	5	2,4	1	4
23	30	0,5	2	3,0	1,5	5
24	60	2	4	2,4	1	6
25	60	2,5	3,5	2,8	2	1
26	45	1,5	2,5	3,0	3	2
27	45	3,5	4,5	2,5	2,5	3
28	60	2	2	2,9	1,5	4
29	60	1,5	3	3,4	2,5	5
30	30	1,5	4	2,0	1,5	6


Расчетные схемы к задаче N_{2} 3

Алгоритм и пример решения задачи № 3

- 1. Определяем тело, равновесие которого нужно рассмотреть брус AB.
- 2. Заменяем связи их реакциями.
- 3. Выбираем систему координат ХҮ.

Дано: $\alpha = 45^{\circ}$; l = 3 м; a = 1,5 м; F = 7 кH; q = 3 кН/м.

4. Распределенную нагрузку заменяем сосредоточенной силой

$$Q = q(l - a) = 3(3 - 1.5) = 4.5(\kappa H)$$

5. Составляем и решаем уравнения статики:

a)
$$\sum M_A = 0$$
; $-M_A + Q\left(\frac{l-a}{2} + a\right) + Fa \sin \alpha = 0$;

$$M_A = Q\left(\frac{l-a}{2} + a\right) + Fa\sin 45^\circ = 4.5\left(\frac{3-1.5}{2} + 1.5\right) + 7 \cdot 1.5 \cdot 0.71 = 17.58 \text{ (kH} \cdot \text{m)};$$

б)
$$\sum M_B = 0$$
; $-M_A - Q\left(\frac{l-a}{2}\right) - F \sin\alpha (l-a) + V_A l = 0$;

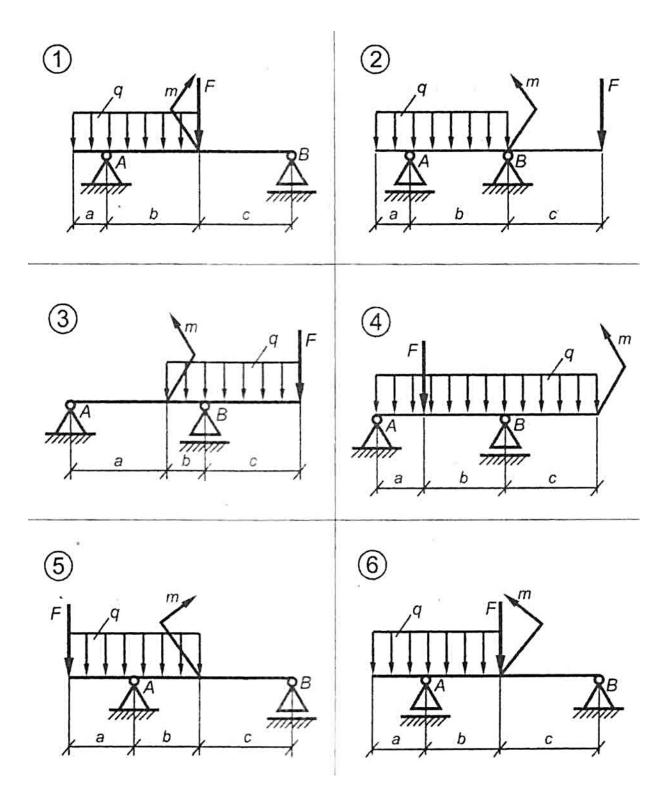
$$V_A = \frac{M_A + \frac{Q(l-a)}{2} + F \sin 45^{\circ} (l-a)}{l} =$$

$$= \frac{17,58 + \frac{4,5(3-1,5)}{2} + 7 \cdot 0,71(3-1,5)}{3} = 9,47(\kappa H);$$

B)
$$\sum X = 0$$
; $-F \cos 45^\circ + H_A = 0$; $H_A = F \cos 45^\circ = 7 \cdot 0.71 = 4.97$ (κH).

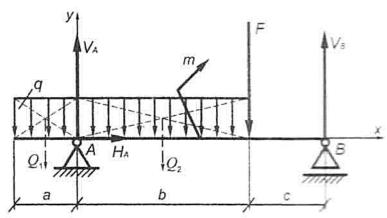
6. Проверяем правильность решения:

$$\sum Y = 0$$
; $-F \sin 45^{\circ} - Q + V_A = 0$; $-7 \cdot 0.71 - 4.5 + 9.47 = 0$ – верно.


Ответ: $V_A = 9,47 \text{ кH}$; $H_A = 4,97 \text{ кH}$; $M_A = 17,58 \text{ кH} \cdot \text{м}$.

Задача №4. Определить реакции опор А и В.

Таблица данных


Danware	P	асстояні	1e	Нагрузка			Схема
Вариант	a, m	<i>b</i> , m	<i>c</i> , m	F , κ H	<i>q</i> , кН/м	<i>т</i> , кН·м	No
1	2	1	2	2	2,5	2	1
2	3	1,5	2,5	2,5	3,0	3	2
3	3,5	2	3	1	2,8	4	3
4	4	2,5	2,5	1	2,4	3	4
5	2,5	2	2	2	3,6	2	5
6	1,5	1	4,5	5	3,0	1	6
7	2	0,5	3	2	2,6	2	1
8	2,5	1	0,5	1,5	3,2	4	2
9	3	2	1	2	3,4	6	3
10	2,5	1,5	0,5	1	3,0	4	4
11	2	0,5	1,5	4	3,2	2	5
12	4,5	2	4,5	2	2,8	3	6
13	3	0,5	2	0,5	2,6	4	1
14	1,5	1	3	1,5	3,4	8	2
15	2	0,5	3	0,5	2,6	4	3
16	4,5	1,5	1	2	3,2	2	4
17	5	4,5	2,5	3	3,0	3	5
18	4,5	2	3,5	1	2,8	5	6
19	5	3	0,5	2	2,5	4	1
20	4	1	2	3	2,4	2	2
21	3	2,5	2,5	2	3,2	4	3
22	5	3,5	3	1	2,4	6	4
23	2	0,5	2	1,5	3,0	5	5
24	4	2	4	1	2,4	4	6
25	3,5	2,5	3,5	2	2,8	1	1
26	2,5	1,5	2,5	3	3,0	4	2
27	4,5	3,5	4,5	2,5	2,5	8	3
28	2	2	2	1,5	2,9	6	4
29	3	1,5	2	2,5	3,4	10	5
30	4	1,5	4	1,5	2,0	2	6

Расчетные схемы к задаче N $^{\circ}$ 4

Алгоритм и пример решения задачи № 4

- 1. Определяем тело, равновесие которого нужно рассмотреть.
- 2. Заменяем связи их реакциями.
- 3. Выбираем систему координат ЛУ.

Дано: a = 2 м; b = 5 м; c = 3 м; F = 8 к H; $q = 2 \text{ к} H/\text{м}; m = 4 \text{ к} H \cdot \text{м}.$

4. Распределенную нагрузку заменяем сосредоточенной силой:

$$Q_1 = qa = 2 \cdot 2 = 4 \text{ (кH)};$$

 $Q_2 = qb = 2 \cdot 5 = 10 \text{ (кH)};$
 $Q = Q_1 + Q_2 = 14 \text{ (кH)}.$

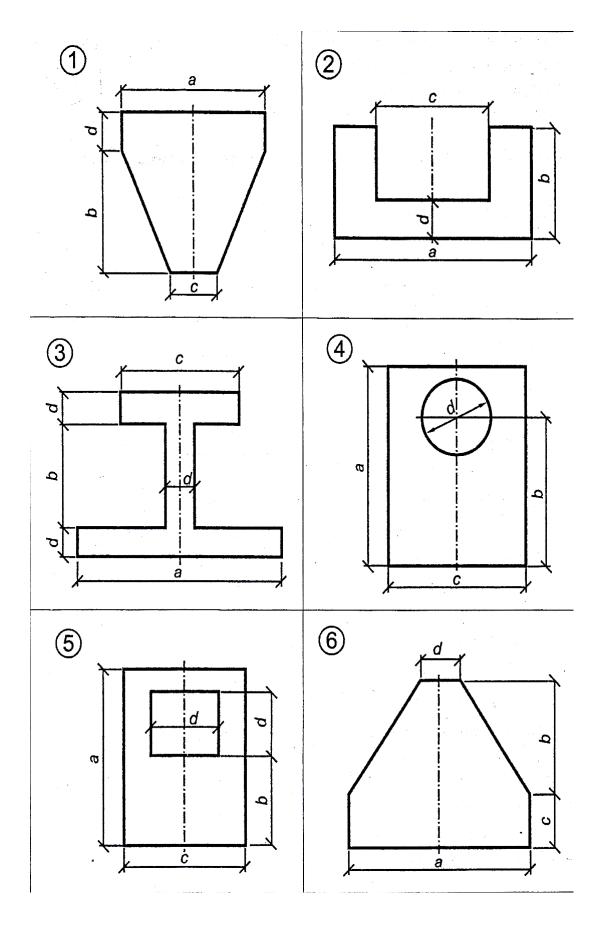
5. Составляем и решаем уравнения статики:

a)
$$\sum M_A = 0$$
; $-V_B(b+c) + \frac{Q_1a}{2} + \frac{Q_2a}{2} + Fb + m = 0$;
 $V_B = \left(\frac{8 \cdot 5 - 4 \cdot 1 + 10 \cdot 2, 5 + 4}{8}\right) = 8 \text{ (KH)};$

б)
$$\sum M_B = 0$$
; $V_A(b+c) - Q\left(\frac{a+b}{2} + c\right) - Fc + m = 0$; $V_A = \left(\frac{8 \cdot 3 + 14 \cdot 6,5 - 4}{8}\right) = 14$ (кН);

в)
$$\sum X = 0$$
; $H_A = 0$ (кН).

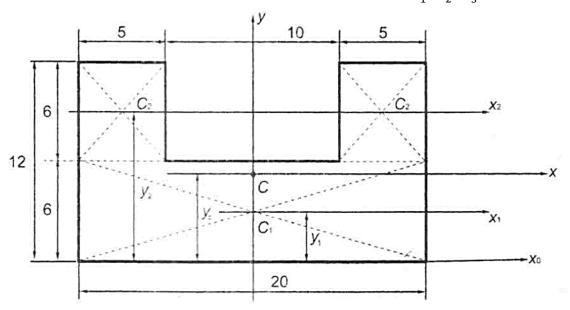
6. Проверяем правильность решения


$$\sum Y=0; -F-Q+V_A+V_B=0; \ 14-8+8-14=0$$
 – верно. Ответ: $V_A=14$ кH; $V_B=8$ кH; $H_A=0$.

Задача №5. Определить положение центра тяжести плоской фигуры геометрической формы.

Таблица данных

Вариант	а, см	<i>b</i> , см	с, см	<i>d</i> , см	Схема №
1	20	12	6	4	1
2	32	18	16	8	2
3	40	24	20	12	3
4	28	18	12	10	4
5	10	6	4	2	5
6	16	12	6	4	6
7	24	18	8	6	1
8	12	6	4	2	2
9	36	25	18	10	3
10	20	12	10	4	4
11	18	12	8	6	5
12	32	18	10	8	6
13	40	30	12	8	1
14	30	24	18	6	2
15	24	18	12	8	3
16	16	12	8	4	4
17	32	24	16	10	5
18	18	12	8	4	6
19	50	30	20	10	1
20	10	6	4	2	2
21	20	12	10	6	3
22	48	24	22	12	4
23	36	18	16	12	5
24	12	6	4	2	6
25	36	24	8	6	1
26	24	18	12	4	2
27	18	12	10	4	3
28	32	18	16	8	4
29	16	12	8	4	5
30	40	24	16	14	6


Расчетные схемы κ задаче № 5

Алгоритм и пример решения задачи № 5

- 1. Так как фигура симметрична, то очевидно $X_c = 0$. Выбираем начальную ось X_0 (по основанию фигуры).
- 2. Разбиваем фигуру на простые части. Если фигура с отверстием, то необходимо дополнить (условно) ее до сплошной, а затем при решении площадь отверстия вычесть.
- 3. Определяем площади и координаты центра тяжести каждой части в отдельности.

Находим
$$Y_C$$
 по формуле $Y_C = \frac{S_{x_0}}{A}$ или $Y_C = \frac{A_1Y_1 + A_2Y_2 + A_3Y_3}{A_1 + A_2 + A_3}$.

Первый способ решения:

1.
$$A_1 = 6 \cdot 20 = 120$$
 (cm²); $Y_1 = 3$ (cm); $A_2 = 5 \cdot 6 = 30$ (cm²); $Y_2 = 9$ (cm).

2. Определяем статический момент площади:

$$S_{x_0} = A_1 Y_1 + 2A_2 Y_2 = 120 \cdot 3 + 2 \cdot 30 \cdot 9 = 900 \text{ (cm}^3\text{)}.$$

3.
$$Y_C = \frac{S_{\chi_0}}{A} = \frac{900}{180} = 5$$
 (см); или $Y_C = \frac{A_1Y_1 + 2A_2Y_2}{A_1 + 2A_2} = \frac{120 \cdot 3 + 2 \cdot 30 \cdot 9}{120 + 2 \cdot 30} = 5$ (см)

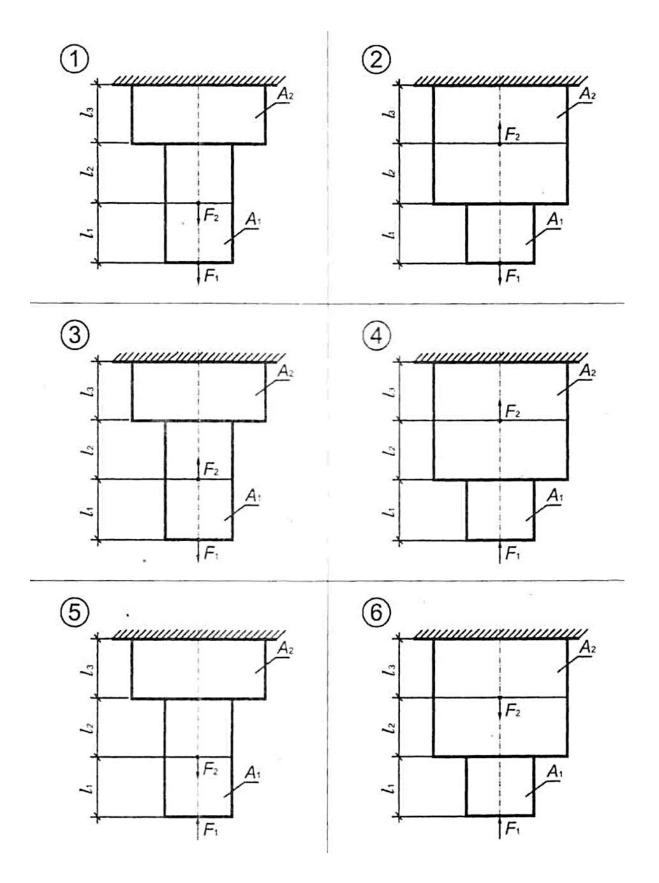
Второй способ решения (дополняя фигуру до сплошной):

3.
$$A_1 = 20 \cdot 12 = 240 \text{ (cm}^2)$$
; $Y_1 = 6 \text{ (cm)}$; $A_2 = 10 \cdot 6 = 60 \text{ (cm}^2)$; $Y_2 = 9 \text{ (cm)}$.
$$Y_C = \frac{A_1 Y_1 - A_2 Y_2}{A_1 - A_2} = \frac{240 \cdot 6 + 60 \cdot 9}{240 + 60} = 5 \text{ (cm)}$$

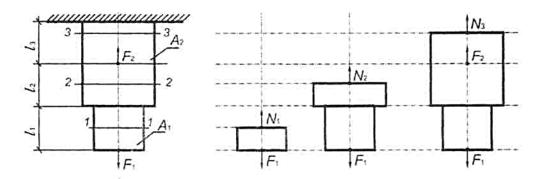
Ответ: Сравнивая результаты двух способов решения, приходим к выводу, что задача решена верно. $Y_C = 5$ (см).

6 Задание для домашней контрольной работы №2

Задача №1. Для данного стального бруса требуется:


- 1) построить эпюры продольных сил и нормальных напряжений по длине бруса,
 - 2) определить удлинение (укорочение) бруса.

Принять модуль продольной упругости $E = 2 \cdot 10^5 \text{ M}\Pi a$.


Таблица данных

Вариант	F ₁ , κH	F 2, κ H	A ₁ , cm ²	A_2 , cm ²	l_1 , M	l_2 , M	<i>l</i> ₃ , M	Схема №
1	12	30	2,8	4	0,6	0,7	0,7	1
2	40	24	1,6	2	0,3	0,6	0,6	2
3	30	16	3	3	0,8	0,4	0,4	3
4	50	10	2,4	4	0,7	0,4	0,4	4
5	22	20	2	5	0,8	0,6	0,6	5
6	16	50	2,6	4,2	0,8	0,9	0,7	6
7	20	42	1,5	4	0,7	0,6	0,8	1
8	30	14	1,8	3	0,6	0,7	0,9	2
9	40	28	3	3	0,4	0,4	0,6	3
10	18	30	2	4,8	0,4	0,3	0,7	4
11	20	40	2,2	3,6	0,6	0,7	0,4	5
12	50	28	4	4	0,7	0,8	0,6	6
13	30	30	2,2	5,6	0,8	0,6	0,7	1
14	14	20	4	3	0,9	0,3	0,4	2
15	40	40	2,4	4,2	0,6	0,2	0,3	3
16	20	11	3	3	0,7	0,6	0,7	4
17	24	22	5	4,2	0,4	0,4	0,8	5
18	30	10	4	6,6	0,3	0,8	0,6	6
19	10	42	2,8	5,4	0,7	0,8	0,6	1
20	50	30	3	4,8	0,8	0,6	0,7	2
21	28	20	1,6	4	0,6	0,6	0,4	3
22	30	36	1,8	3	0,4	0,7	0,3	4
23	40	20	2,4	4	0,4	0,4	0,6	5
24	20	32	3	4,8	0,3	0,3	0,3	6
25	42	50	5	6,8	0,2	0,7	0,8	1
26	10	34	1,5	6	0,6	0,6	0,7	2
27	30	20	2,2	7	0,4	0,7	0,8	3
28	20	12	2	4,2	0,8	0,4	0,8	4
29	45	55	1,8	3,8	0,8	0,4	0,7	5
30	14	42	4	3	0,6	0,6	0,6	6

Расчетные схемы к задаче №1

Алгоритм решения задачи № 1

- 1. Разбить брус на отдельные участки. У каждого участка границами будут являться сечения, в которых приложены силы, или изменения формы сечения бруса.
- 2. Для определения значений продольных сил воспользоваться методом сечений. Провести сечение 1-1 и мысленно отбросить верхнюю часть бруса. Затем приложить к этому сечению продольную силу N_1 равную сумме внутренних сил в сечении и заменяющую действие отброшенной части на оставшуюся нижнюю часть бруса.

Учитывая состояние равновесия оставшейся нижней части участка l_1 составить уравнение равновесия:

$$\sum Y = 0$$
; $N_1 - F_1 = 0$, откуда $N_1 = F_1$.

3. Отбросить верхнюю часть бруса от сечения 2–2, составить уравнение равновесия для оставшейся части бруса и вычислить величину продольной силы на участке l_2 :

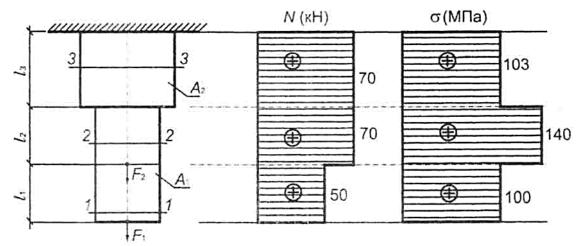
$$\sum Y = 0$$
; $N_2 - F_1 = 0$; $N_2 = F_1$

4. Действуя аналогично в отношении сечения 3–3, получить величину продольной силы на участке 1_3 :

$$\sum Y = 0$$
; $N_3 - F_1 + F_2 = 0$; $N_3 = F_1 - F_2$

Из рассмотренного следует, что продольная сила в любом сечении бруса равна алгебраической сумме (с учетом знаков) внешних сил, расположенных (отсекаемых) по одну сторону от сечения. Если сила действует на растяжение, надо брать знак (+), если на сжатие – знак (-).

Поэтому эпюру продольных сил необходимо строить методом прохода, идя от свободного конца бруса $N = \sum F_i$ (см. пример).


5. Определить величину нормальных напряжений в сечении каждого из участков бруса по формуле $\sigma = \frac{N}{4} \left(\frac{H}{MM^2} = \frac{MH}{M^2} = M\Pi a \right)$.

На участке
$$l_1$$
 $\sigma_1 = \frac{N_1}{A_1}$, на l_2 $\sigma_2 = \frac{N_2}{A_2}$ и на l_3 $\sigma_3 = \frac{N_3}{A_2}$.

- 6. Для построения эпюр продольных сил и нормальных напряжений провести оси, параллельные оси бруса, и отложить известные значения N и σ в масштабе. Положительные значения вправо, отрицательные влево.
- 7. Определить абсолютное удлинение (укорочение) длины бруса по формуле Гука $\Delta l = \frac{Nl}{EA}$ для каждого участка. Полное удлинение или укорочение получается путем сложения (с учетом знаков): $\Delta l_{\text{общ}} = \Delta l_1 + \Delta l_2 + \Delta l_3$.

Пример решения задачи № 1

Дано:
$$F_1=50$$
 кН; $F_2=20$ кН; $l_1=0.8$ м; $l_2=0.8$ м; $l_3=1$ м; $A_1=5$ см²; $A_2=6.8$ см².

1.Так как продольная сила равна сумме отсекаемых сил ($N=\sum F_i$), то очевидно: $N_1=F_1=50$ кH; $N_2=F_1+F_2=70$ кH; $N_3=F_1+F_2=70$ кH.

2.
$$\sigma_1 = \frac{N_1}{A_1} = \frac{50 \cdot 10^{-3}}{5 \cdot 10^{-4}} = 100 \text{ (M}\Pi a);$$

$$\sigma_2 = \frac{N_2}{A_1} = \frac{70 \cdot 10^{-3}}{5 \cdot 10^{-4}} = 140 \text{ (M}\Pi a);$$

$$\sigma_3 = \frac{N_3}{A_2} = \frac{70 \cdot 10^{-3}}{6,8 \cdot 10^{-4}} = 103 \text{ (M}\Pi a).$$
3. $\Delta l_1 = \frac{N_1 l_1}{EA_1} = \frac{50 \cdot 10^{-3} \cdot 0.8}{2 \cdot 10^5 \cdot 5 \cdot 10^{-4}} = \frac{40 \cdot 10^{-3}}{100} = 4 \cdot 10^{-4} \text{ (M)}$

$$\Delta l_2 = \frac{N_2 l_2}{EA_2} = \frac{70 \cdot 10^{-3} \cdot 0.8}{2 \cdot 10^5 \cdot 5 \cdot 10^{-4}} = \frac{56 \cdot 10^{-3}}{100} = 5.6 \cdot 10^{-4} \text{ (M)}$$

$$\Delta l_3 = \frac{N_3 l_3}{EA_3} = \frac{70 \cdot 10^{-3} \cdot 1}{2 \cdot 10^5 \cdot 6.8 \cdot 10^{-4}} = 5.14 \cdot 10^{-4} \text{ (M)}$$
4. $\Delta l_{06III} = \Delta l_1 + \Delta l_2 + \Delta l_3 = 14.75 \cdot 10^{-4} \text{ (M)} = 1.47 \text{ (MM)}$

Ответ: удлинение бруса составило 1,47 мм.

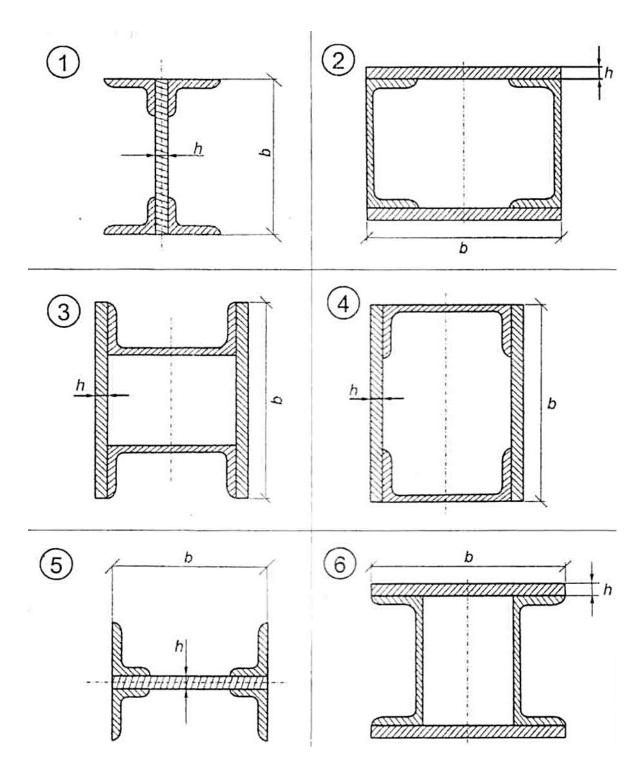

Задача №2. Определить главные центральные моменты инерции составного сечения.

Таблица данных

Рариант	Уголок	Швеллер	h veve	h veve	Cyona No
Вариант	(ΓOCT 8510-86)	(ΓOCT 8240-89)	b ,мм	h ,мм	Схема №
1	70 x 45 x 5	18	150	10	1
2	75 x 50 x 6	18a	160	10	2
3	80 x 50 x 5	20	170	12	3
4	80 x 50 x 6	20a	180	12	4
5	90 x 56 x 6	22	190	14	5
6	90 x 56 x 8	22a	200	14	6
7	100 x 63 x 6	24	210	16	1
8	100 x 63 x 8	24a	220	16	2
9	110 x 70 x 6.5	27	230	18	3
10	110 x 70 x 8	30	240	18	4
11	70 x 45 x 5	18	150	20	5
12	75 x 50 x 6	18a	160	20	6
13	80 x 50 x 5	20	170	10	1
14	80 x 50 x 6	20a	180	10	2
15	90 x 56 x 6	22	190	12	3
16	100636	22a	200	12	4
17	100 x 63 x 8	24	210	14	5
18	110 x 70 x 6.5	24a	220	14	6
19	110 x 70 x 8	27	230	16	1
20	70 x 45 x 5	30	240	16	2
21	75 x 50 x 6	18	150	18	3
22	80 x 50 x 5	18a	160	18	4
23	80 x 50 x 6	20	170	20	5
24	90 x 56 x 6	20a	180	20	6
25	90 x 56 x 8	22	190	10	1
26	100 x 63 x 6	22a	200	10	2
27	100 x 63 x 8	24	210	12	3
28	110 x 70 x 6.5	24a	220	12	4
29	110 x 70 x 8	27	230	14	5
30	80 x 50 x 5	30	240	14	6

Примечание. Если на расчетной схеме отсутствует указанный в таблице вид профиля, то его следует не учитывать.

Расчетные схемы к задаче № 2

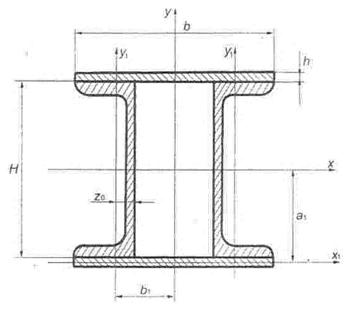
Алгоритм и пример решения задачи № 2

Дано: b = 22 см; h = 2 см; швеллер № 18.

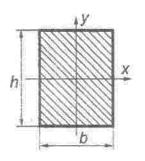
- 1. Так как фигура имеет две оси симметрии, то положение центра тяжести, очевидно, находится на их пересечении. Эти оси являются главными центральными осями инерции, для которых и требуется определить J_x и J_y .
- 2. Разбиваем фигуру на составляющие и определяем их моменты инерции относительно собственных центральных осей с помощью таблиц ГОСТ 8240-89

(швеллер № 18;
$$J_x^{[}=1~090~\mathrm{cm}^4; J_y^{[}=86~\mathrm{cm}^4; A=20,7~\mathrm{cm}^2; H=18~\mathrm{cm};$$
 $b_{\mathrm{полки}}=7~\mathrm{cm}; z_0=1,94~\mathrm{cm}^4)$ и по формуле $J_x^-=\frac{bh^3}{12}.$

3. Определяем расстояние между осями:


$$a_1 = \frac{H}{2} + \frac{h}{2} = \frac{18}{2} + \frac{2}{2} = 10$$
 (см);
$$b_1 = \frac{b}{2} - b_{\text{полки}} + z_0 = \frac{22}{2} - 7 + 1,94 = 5,94$$
 (см).

4. Применяя формулу $J = J^0 + a^2 A$, определяем момент инерции отдельных частей сечения относительно главных осей инерции, суммируем их и получаем главные моменты инерции всего сечения:


$$J_x = 2J_x^{\lceil} + 2J_x^{-} = 2 \cdot 1090 + 2\left(\frac{bh^3}{12} + a_1^2A\right) = 2180 + 2\left(\frac{22 \cdot 2^3}{12} + 10^2 \cdot 44\right) = 11009 \text{ (cm}^4);$$

$$J_{y} = 2J_{y}^{[} + 2J_{y}^{-} = 2\left(J_{y_{1}}^{[} + b_{1}^{2}A^{[}\right) + 2\left(\frac{bh^{3}}{12}\right) =$$

$$= 2(86 + 5,94^{2} \cdot 20,7) + 2\left(\frac{22 \cdot 2^{3}}{12}\right) = 5182(\text{cm}^{4}).$$

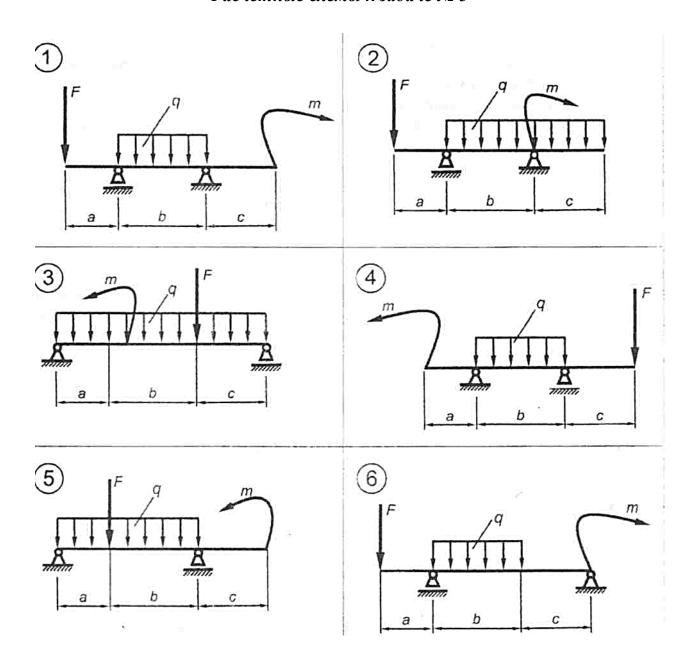
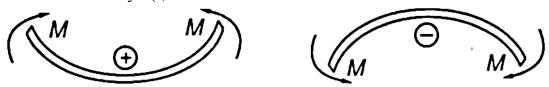

Задача №3. Для заданной балки построить эпюры поперечных сил и изгибающих моментов, подобрать прямоугольное сечение и проверить на сдвиг, считая нагрузку расчетной. Принять R=13 МПа, $R_s=1$ МПа, $\gamma_c=1, \frac{b}{h}=\frac{2}{3}$.

Таблица данных

Вариант	F , кН	q , кН/м	т , кН ⋅ м	a , M	b , м	C , M	Схема №
1	40	20	10	3	4	2	1
2	30	20	20	2	6	3	2
3	20	30	40	1	4	2	3
4	50	40	30	3	4	1	4
5	40	40	20	2	5	2	5
6	20	30	40	4	4	3	6
7	40	20	20	1	4	2	1
8	30	40	30	4	5	1	2
9	50	40	40	2	6	3	3
10	60	30	30	2	3	2	4
11	20	50	20	3	4	2	5
12	40	30	20	2	5	4	6
13	20	40	40	1	3	2	1
14	60	30	20	2	4	3	2
15	40	30	30	4	6	2	3
16	70	40	20	3	5	4	4
17	50	20	40	4	5	3	5
18	30	40	10	3	6	4	6
19	20	50	10	4	6	3	1
20	40	20	20	2	4	2	2
21	60	40	30	3	3	3	3
22	50	30	40	4	5	2	4
23	80	40	20	3	5	4	5
24	30	40	20	2	4	3	6
25	70	20	30	2	3	2	1
26	60	20	20	4	6	3	2
27	40	30	40	2	2	2	3
28	20	50	20	4	4	4	4
29	50	20	20	2	4	3	5
30	80	40	30	3	5	4	6

Расчетные схемы к задаче № 3


Алгоритм решения задачи № 3

- 1. Найти опорные реакции и проверить их по уравнениям статики.
- 2. Построить эпюру Q, учитывая что поперечная сила ε любом сечении балки равна алгебраической сумме проекций внешних сил, действующих по одну сторону от сечения, на ось, перпендикулярную оси балки, т. е. равна алгебраической сумме отсекаемых сил с учетом знаков. Если сила стремится вызвать смещение отсекаемой части по часовой стрелке (вправо), то берем знак плюс (+), а если против (влево) знак минус (-).

$$\begin{array}{c|c}
Q & (+) \\
\hline
 & Q \\
\hline
 & Q
\end{array}$$

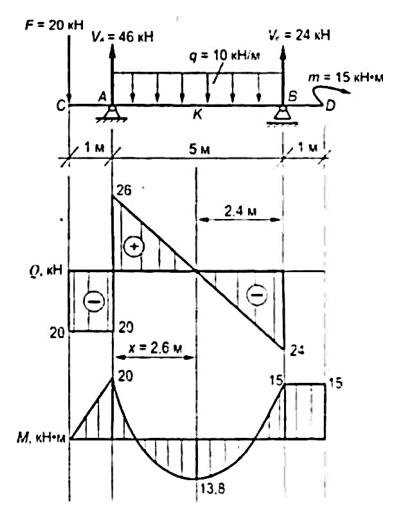
Строят эпюру Q по значениям, полученным методом прохода по характерным точкам слева направо. Такими точками могут быть точки приложения сосредоточенных сил, пар сил, опорных реакций, начала и конца распределенной нагрузки. Для построения эпюры Q проводят нулевую линию под изображением балки. Положительные значения силы Q откладывают в принятом масштабе вверх от нее, отрицательные — вниз.

3. Построить эпюру M. Изгибающий момент в любом сечении балки определяется как алгебраическая сумма моментов внешних сил, действующих по одну сторону от сечения относительно его центра с учетом знаков. Если моменты вызывают растяжение нижних волокон, то берут знак плюс (+), если верхних — знак минус (-).

Необходимо иметь ввиду, что эпюра M строится в выбранном масштабе на растянутых волокнах, т.е. положительные значения моментов откладываются вниз от оси, а отрицательные — вверх от оси.

Построенные эпюры Q и M заштриховываются прямыми линиями, перпендикулярными к нулевой линии. Каждый штрих определяет значения Q и M в данном сечении балки. Знаки на эпюре Q ставятся, а на эпюре M — нет, т.к. она построена на растянутых волокнах.

Для проверки правильности значений Q и M в любой характерной точке балки надо пройти балку с расчетом аналогичным способом, но с ее правого конца, учитывая при этом установленные правила знаков.


Учитывая, что между интенсивностью распределенной нагрузки, поперечной силой и изгибающим моментом существует дифференциальная зависимость: $\frac{dM}{dz} = Q$; $\frac{dQ}{dz} = q$; используя геометрический смысл производной и ее свойства, следует применить правила для построения и проверки уже построенных эпюр Q и M:

- На том участке, где отсутствует нагрузка, поперечная сила не изменяется, и эпюра Q ограничивается прямой, параллельной оси балки, а эпюра M наклонной к оси балки.
- На том участке, где имеется равномерно распределенная нагрузка, поперечная сила изменяется, и эпюра Q ограничивается прямой, наклонной к оси балки, а эпюра M квадратной параболой.
- На участке с равномерно распределенной нагрузкой в том сечении, где поперечная сила меняет знак с плюса (+) на минус (-), т. е. Q=0, находится вершина параболы. Для определения положения этого сечения с целью определения в нем изгибающего момента и построения параболы необходимо составить уравнение для поперечной силы Q_x в этом сечении и, приравняв его к нулю, определить расстояние x от начала участка до экстремальной точки (К) или $x=\frac{Q_{\text{нач.уч.}}}{a}$
- На том участке, где поперечная сила положительна, изгибающий момент возрастает, линия на эпюре *М* нисходящая. На том участке, где поперечная сила отрицательна, момент убывает, линия на эпюре *М* восходящая.
- В том сечении, где приложена сосредоточенная сила, поперечная сила изменяется скачком (на эпюре Q два значения слева и справа).
- В том сечении, где приложен сосредоточенный момент (пара сил), поперечная сила не изменяется, а изгибающий момент изменяется скачком (на эпюре M два значения слева и справа).
- 4. Вычислить требуемый момент сопротивления балки по формуле $W_x = \frac{M_{max}}{R}$
- 5. Определить размеры поперечного сечения балки по формуле $W_{\chi}=\frac{bh^2}{6}$ через заданное отношение $\frac{b}{h}=\frac{2}{3},\,b=\frac{2}{3}h.$ Тогда $W_{\chi}=\frac{\frac{2}{3}hh^2}{6}=\frac{h^3}{9},$ откуда $h=\sqrt[3]{9W_{\chi}}$
 - 6. Проверить на сдвиг сечение балки по формуле Журавского:

$$\tau_{max} = \frac{Q_{max}S_x^{\text{otc}}}{I_x b}$$

где $S_x^{\text{отс}}$ — статический момент отсечной части сечения, J_x — осевой момент инерции, b — ширина сечения у нейтрального слоя, или, подставив для прямоугольного сечения $S_x^{\text{отс}} = \frac{bh^2}{8}$ и $J_x = \frac{bh^3}{12}$ получить $\tau_{max} = \frac{3}{2} \frac{Q_{max}}{A}$.

Пример решения задачи №3

1. Определяем опорные реакции балки:

$$\sum m_A = 0;$$

$$-F \cdot 1 + q \cdot 5 \cdot 2,5 + m - V_B \cdot 5 = 0;$$

$$V_B = \frac{-20 + 125 + 15}{5} = \frac{120}{5} = 24 \text{ (KH)};$$

$$\sum m_B = 0;$$

$$-F \cdot 6 - q \cdot 5 \cdot 2,5 + m + V_A \cdot 5 = 0;$$

$$V_A = \frac{125 + 120 - 15}{5} = \frac{230}{5} = 46 \text{ (KH)};$$

$$\sum X = 0; H_A = 0.$$

Проверка:

$$\sum Y = 0;$$

 $V_A + V_B - q \cdot 5 - F = 0;$
 $46 + 24 - 50 - 20 = 0.$

2. Строим эпюру $\it Q$ методом прохода по характерным точкам (ход слева):

$$Q_C^{\text{лев}} = 0;$$
 $Q_C^{\text{прав}} = Q_A^{\text{лев}} = -F = -20 \text{ (кH)};$

$$\begin{split} Q_A^{\text{прав}} &= -F + V_A = -20 + 46 = 26 (\text{кH}); \\ Q_B^{\text{лев}} &= -F + V_A - q \cdot 5 = -20 + 46 - 50 = -24 (\text{кH}); \\ Q_B^{\text{прав}} &= -F + V_A - q \cdot 5 + V_B = -24 + 24 = 0; \\ Q_K &= -F + V_A - q \cdot x = 0 \rightarrow x = \frac{26}{10} = 2,6 \text{ (M)}. \end{split}$$

3. Строим эпюру M (ход слева):

при
$$z=0 \rightarrow M_C=0$$
;

$$z = 1 \to M_A = -F \cdot 1 = -20(\kappa H \cdot M);$$

$$z = 3.6 \rightarrow M_K = -F \cdot 3.6 + V_A \cdot 2.6 - q \cdot 2.6 \cdot 1.3 =$$

= $-20 \cdot 3.6 + 46 \cdot 2.6 - 10 \cdot 2.6 \cdot 1.3 = 13.8 (kH \cdot m)$:

$$z = 6 \rightarrow M_B = -F \cdot 6 + V_A \cdot 5 - q \cdot 5 \cdot 2,5 = -20 \cdot 6 + 46 \cdot 5 - 10 \cdot 5 \cdot 2,5 = -15 (\kappa H \cdot M);$$

$$z = 7$$
(ход справа) $\rightarrow M_D = -m = -15$ (кН · м).

4. Определяем требуемый момент сопротивления балки:

$$W_{x} = \frac{M_{max}}{R} = \frac{20 \cdot 10^{-3}}{13} = 1,538 \cdot 10^{-3} (\text{m}^{3}) = 1538 (\text{cm}^{3}).$$

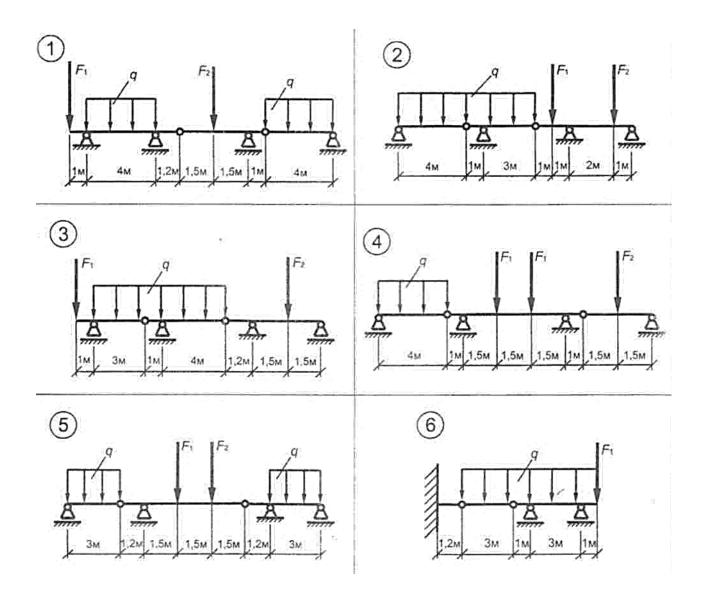
5 Подбираем сечение, приняв $\frac{b}{h} = \frac{2}{3}$, $b = \frac{2}{3}h$, по формуле $W_x = \frac{\frac{2}{3}hh^2}{6} = \frac{h^3}{9}$.

$$h = \sqrt[3]{9 \cdot W_x} = \sqrt[3]{9 \cdot 1538} = \sqrt[3]{13842} = 24$$
(cm);

$$b = \frac{2}{3}h = 16$$
(cm).

6. Проверяем на сдвиг:

$$au_{max} = \frac{3}{2} \frac{Q_{max}}{A} = \frac{3}{2} \frac{26 \cdot 10^{-3}}{16 \cdot 24 \cdot 10^{-4}} = 1 (M\Pi a) = R_S$$
, что допустимо.


Ответ: b = 16 см, h = 24 см.

Задача №4 Для трехпролетной статически определимой балки составить схему взаимодействия ее элементов и построить эпюры Q и M.

Таблица данных

Вариант	F_1 , к H	F_2 , к H	<i>q</i> ,кН/м	Схема №
1	25	16	16	1
2	30	14	16	2
3	28	16	12	3
4	24	18	14	4
5	36	20	16	5
6	30	22	18	6
7	26	20	18	1
8	32	24	20	2
9	34	26	20	3
10	30	28	16	4
11	32	30	10	5
12	28	18	20	6
13	26	16	10	1
14	34	12	10	2
15	26	10	14	3
16	32	12	10	4
17	30	30	20	5
18	28	20	10	6
19	25	16	20	1
20	24	14	10	2
21	32	16	10	3
22	24	18	20	4
23	30	20	10	5
24	24	22	10	6
25	28	20	20	1
26	30	24	10	2
27	25	26	20	3
28	29	28	10	4
29	34	30	10	5
30	20	18	20	6
				<u> </u>

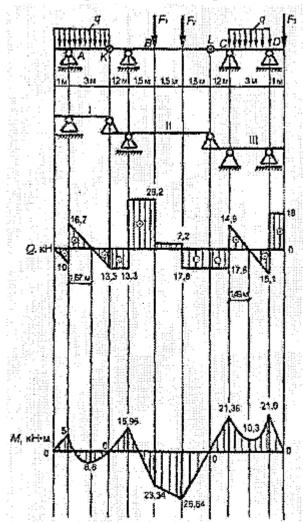
Расчетные схемы к задаче № 4

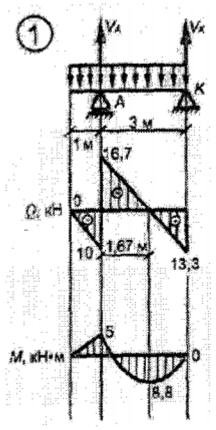
Пример решения задачи №4

Расчет многопролетной шарнирно-консольной балки

Дано: q = 10 кH/м; $F_2 = 20 \text{ кH};$ $F_1 = 24 \text{кH};$ $F_3 = 18 \text{ кH}.$

Исследуем геометрическую структуру системы по формуле:


 $\Pi = 2Ш + C - 3Д;$


 $\Pi = 2 \cdot 2 + 5 - 3 \cdot 3 = 0.$

Очевидно, что система статически определима.

Решаем задачу методом расчленения, предварительно составив схему взаимодействия ее элементов (поэтажную схему).

Эпюры Q (устно) и M строим методом прохода по характерным точкам,

$$\sum_{K} m_{A} = 0;$$

$$-V_{K} \cdot 3 + q \cdot 3 \cdot 1,5 - q \cdot 1 \cdot 0,5 = 0;$$

$$V_{K} = \frac{10 \cdot 3 \cdot 1,5 - 10 \cdot 0,5}{3} = 13,3 \text{ (kH)};$$

$$\sum_{K} m_{K} = 0;$$

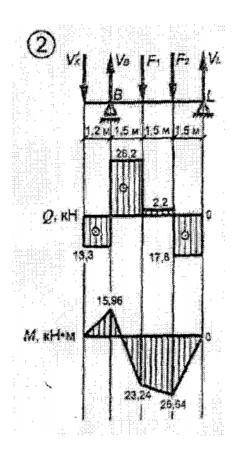
$$-q \cdot 3 \cdot 1,5 + V_{A} \cdot 3 - q \cdot 1 \cdot 3,5 = 0;$$

$$V_{A} = \frac{10 \cdot 3 \cdot 1,5 + 10 \cdot 1 \cdot 3,5}{3} = 26,7 \text{ (kH)};$$

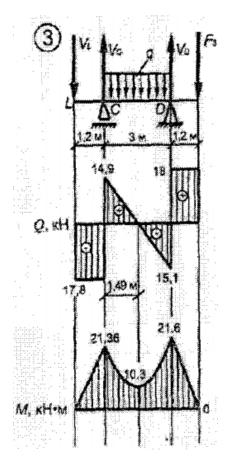
$$\text{Проверка: } \sum_{K} y = 0;$$

$$V_{A} + V_{K} - q \cdot 1 - q \cdot 3 = 0;$$

$$26,7 + 13,3 - 40 = 0;$$


$$40 - 40 = 0. \text{ Bepho!}$$

$$M_{(Z=0)} = 0;$$


$$M_{(Z=1)} = -q \cdot 1 \cdot 0,5 = -5 \text{ (kH \cdot m)};$$

$$M_{(Z=2,67)} = -q \cdot 2,67 \cdot 1,34 + V_{A} \cdot 1,67 = 8,8 \text{ (kH \cdot m)};$$

$$M_{(Z=4)} = 0.$$

$$\begin{split} V'_K &= 13,3 \text{ кH} - \text{из (1)} \\ \sum m_B &= 0; \\ -V'_K \cdot 1,2 + F_1 \cdot 1,5 - F_2 \cdot 3 - V_L \cdot 4,5 &= 0; \\ V_L &= \frac{-1,2V'_K + 1,5F_1 + 3F_2}{4,5} = \frac{-13,3 \cdot 1,2 + 24 \cdot 1,5 + 20 \cdot 3}{4,5} = \\ &= \frac{-15,96 + 36 + 60}{4,5} = 17,8 \text{ (кH)}; \\ \sum m_L &= 0; \\ -V'_K \cdot 5,7 + V_B \cdot 4,5 - F_1 \cdot 3 - F_2 \cdot 15 &= 0; \\ V_B &= \frac{5,7V'_K + 3F_1 + 1,5F_2}{4,5} = \frac{13,3 \cdot 5,7 + 24 \cdot 3 + 20 \cdot 1,5}{4,5} = 39,5 \text{ (кH)}; \\ \Pi\text{роверка: } V_B + V_L - V'_K - F_1 - F_2 &= 0; \\ 39,5 + 17,8 - 13,3 - 20 - 24 &= 0; \\ 57,3 - 57,3 &= 0. \text{ Bepho!} \\ M_{(Z=0)} &= 0; \\ M_{(Z=1,2)} &= -V'_K \cdot 1,2 = -15,96 \text{ (кH} \cdot \text{м}); \\ M_{(Z=3,7)} &= -V'_K \cdot 2,7 + V_B \cdot 1,5 = 23,34 \text{ (кH} \cdot \text{м}); \\ M_{(Z=4,2)} &= -V'_K \cdot 4,2 + V_B \cdot 3 - F_1 \cdot 1,5 = -13,3 \cdot 4,2 + 39,5 \cdot 3 - 24 \cdot 1,5 = \\ &= 26,64 \text{ (кH} \cdot \text{м}); \\ M_{(Z=5,7)} &= 0. \end{split}$$

$$\begin{split} &V_L' = 17,8 \text{ кH} - \text{из} \text{ (2)} \\ &\sum m_C = 0; \\ &-V_L' \cdot 1,2 + q \cdot 3 \cdot 1,5 - V_D \cdot 3 + F_3 \cdot 4,2 = 0; \\ &V_D = \frac{-V_L' \cdot 1,2 + q \cdot 4,5 + F_3 \cdot 4,2}{3} = \frac{-17,8 \cdot 1,2 + 10 \cdot 4,5 + 18 \cdot 4,2}{3} = \\ &= 33,1 \text{ (кH)}; \\ &\sum m_D = 0; \\ &-V_L' \cdot 4,2 + V_C \cdot 3 - q \cdot 3 \cdot 1,5 + F_3 \cdot 1,2 = 0; \\ &V_C = \frac{V_L' \cdot 4,2 + q \cdot 4,5 - F_3 \cdot 1,2}{3} = \frac{17,8 \cdot 4,2 + 10 \cdot 4,5 - 18 \cdot 1,2}{3} = 32,7 \text{ (кH)}; \\ &\Pi\text{роверка: } \sum y = 0; \\ &V_C + V_D - V_K' - F_3 - q \cdot 3 = 0; \\ &32,7 + 33,1 - 17,8 - 18 - 30 = 0; \\ &65,8 - 65,8 = 0. \text{ Bepho!} \\ &M_{(Z=0)} = 0; \\ &M_{(Z=1,2)} = -V_L' \cdot 1,2 = -21,36 \text{ (кH \cdot M)}; \\ &M_{(Z=2,69)} = -V_L' \cdot 2,69 + V_C \cdot 1,49 - q \cdot 1,49 \cdot 0,745 = -10,34 \text{ (кH \cdot M)}; \\ &M_{(Z=4,2)} = -V_L' \cdot 4,2 + V_C \cdot 3 - q \cdot 3 \cdot 1,5 = -21,7 \text{ (кH \cdot M)}; \\ &M_{(Z=5,2)} = 0. \end{split}$$

7 Оценка результатов учебной деятельности при выполнении домашних контрольных работ

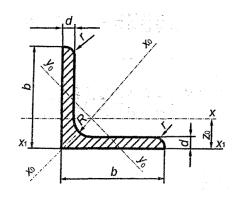
По результатам выполнения домашней контрольной работы выставляется отметка «зачтено».

Результат выполнения домашней	Оценка результатов
контрольной работы	учебной деятельности
1. Работа выполнена не в полном объеме или не	Не зачтено.
соответствует заданию (варианту) и т.п.	пс зачтено.
2. В задачах не выполнены проверки решения или	Не зачтено.
нет графического решения.	пс зачтено.
3. Неграмотно выполнена расчетная схема,	
отсутствуют обозначения, цифры и буквы	Не зачтено.
прописаны неразборчиво, в результате чего,	TIC SUTTENO.
проверить задачу невозможно.	
4. Работа выполнена в полном объеме, в	
соответствии с заданием и вариантом. Допущены	Зачтено.
несущественные ошибки, не имеющие особого	Janieno.
значения при решении задачи.	

8 Литература

Основная:

- 1. Портаев Л.П. Техническая механика / Л.П. Портаев, А.А. Петраков, В.Л. Портаев Москва: Стройиздат, 1987.
- 2. Сетков В.И. Техническая механика для строительных специальностей. Учебное пособие для студентов учреждений среднего профессионального образования / В.И. Сетков. Москва: Академия, 2019.
- 3. Сетков В.И. Сборник задач по технической механике. 3-е издание / В.И. Сетков. Москва: Академия, 2007.
 - 4. Мухин Н.В. Статика сооружений / Н.В. Мухин. Москва, 1980.
- 5. Мухин Н.В. Статика сооружений в примерах / Н.В. Мухин. Москва: Высшая школа, 1972.


Дополнительная:

- 6. Вереина Л.И. Техническая механика / Л.И. Вереина. Москва: Академия, 2003.
- 7. Завистовский В.Э. Техническая механика / В.Э. Завистовский, Н.М. Захаров. – Минск: Амалфея, 2000.

ЗНАЧЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

α°	sin α	cos α	tg α	ctg α
0	0,0000	1,0000	0,0000	± ∞
1	0,0175	0,9998	0,000	57,290
2	0,0349	0,9994	0,0349	28,636
3	0,0523	0,9986	0,0524	19,081
4		0,9976	0,0699	14,301
5	0,0698	· ·		
6	0,0872	0,9962	0,0875	11,430
	0,1045	0,9945	0,1051	9,514
7	0,1219	0,9925	0,1228	8,144
8 9	0,1392	0,9903	0,1405	7,115
	0,1564	0,9877	0,1584	6,314
10	0,1736	0,9848	0,1763	5,671
11	0,1908	0,9816	0,1944	5,145
12	0,2079	0,9781	0,2126	4,705
13	0,2250	0,9744	0,2309	4,331
14	0,2419	0,9703	0,2493	4,01
15	0,2588	0,9659	0,2697	3,732
16	0,2756	0,9613	0,2867	3,487
17	0,2924	0,9563	0,3057	3,271
18	0,3090	0,9511	0,3249	3,076
19	0,3256	0,9455	0,3443	2,904
20	0,3420	0,9397	0,3640	2,747
21	0,3584	0,9336	0,3839	2,605
22	0,3746	0,9272	0,4040	2,475
23	0,3907	0,9205	0,4245	2,356
24	0,4067	0,9135	0,4452	2,246
25	0,4226	0,9063	0,4663	2,145
26	0,4384	0,8988	0,4877	2,050
27	0,4540	0,8910	0,5095	1,963
28	0,4695	0,8829	0,5317	1,881
29	0,4848	0,8746	0,5543	1,804
30	0,5000	0,8660	0,5774	1,732
31	0,5150	0,8572'	0,6009	1,664
32	0,5299	0,8480	0,6249	1,600
33	0,5446	0,8387	0,6494	1,540
34	0,5392	0,8290	0,6745	1,483
35	0,3736	0,8192	0,7002	1,428
36	0,5878	0,8090	0,7265	1,376
37	0,6018	0,7986	0,7536	1,327
38	0,6157	0,7880	0,7813	1,280
39	0,6293	0,7771	0,8098	1,235
40	0,6128	0,7660	0,8391	1,192
41	0,6561	0,7547	0,8693	1,150
42	0,6691	0,7431	0,9004	1,111
43	0,6820	0,7314	0,9325	1,072
44	0,6947	0,7193	0,9657	1,036
45	0,7071	0,7071	1,0000	1,0000

СОРТАМЕНТ ПРОКАТНОЙ СТАЛИ Сталь прокатная угловая равнополочная (ГОСТ 8509-93)

Обозначения:

b – ширина полки;

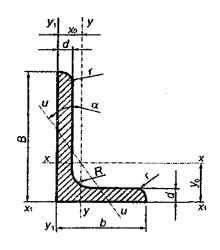
і – радиус инерции;

R – радиус внутреннего закругления;

r – радиус закругления полки;

J – момент инерции;

d – толщина полки;


 z_0 – расстояние от центра тяжести до полки.

	b	d	R	10				Сп	равочны	іе вели	чины д	ля ос	ей	
№ про-	υ	а	Λ	r	Площадь сечения А, см ²	Масса 1 м длины, кг	x-z	r	x_0 –	x_0	y_0 –	y _o	$x_1 - x_1$	7.0
филя		MN	м		площадь сечения А, см	Масса 1 м длины, кі	J_x ,	i_x ,	$J_{x0\max}$	i_x 0max,	J_{y0min} ,	i_y 0min	J_{x1} ,	Z0, CM
		1411	· <u>·</u>				CM ⁴	CM	CM ⁴	CM	CM ⁴	CM	CM ⁴	Civi
2	20	3	3,5	1,2	1,13	0,89	0,40	0,59	0,63	0,75	0,17	0,39	0,23	0,60
2	20	4	3,3	1,2	1,46	1,15	0,50	0,58	0,78	0,73	0,22	0,38	0,28	0,64
3	30	3	4,0	1,3	1,74	1,36	1,45	0,91	2,30	1,15	0,60	0,59	0,85	0,85
3	30	4	4,0	1,3	2,27	1,78	1,84	0,80	2,92	1,13	0,77	0,58	1,08	0,89
		3			2,35	1,85	3,55	1,23	5,63	1,55	1,47	0,79	2,08	1,09
4	40	4	5,0	1,7	3,08	2,42	4,58	1,22	7,26	1,53	1,90	0,78	2,68	1,13
4	40	5			3,79	2,98	5,53	1,21	8,75	1,52	2,30	0,78	3,22	1,17
		3			2,65	2,08	5,13	1,39	8,13	1,75	2,12	0,89	3,00	1,21
4,5	45	4	5,0	1,7	3,48	2,73	6,63	1,38	10,52	1,74	2,74	0,89	3,89	1,26
4,3	43	5			4,29	3,37	8,03	1,37	12,74	1,72	3,33	0,88	4,71	1,30

		3			2,96	2,32	7,11	1,55	11,27	1,95	2,95	1,00	4,16	1,33
_	50	4		1.0	3,89	3,05	9,21	1,54	14,63	1,94	3,80	0,99	5,42	1,38
5	50	5	5,5	1,8	4,80	3,77	11,20	1,53	17,77	1,92	4,63	0,98	6,57	1,42
		6			5,69	4,47	13,07	1,52	20,72	1,91	5,43	0,98	7,65	1,46
5.6	56	4	6.0	2.0	4,38	3,44	13,10	1,73	20,79	2,18	5,41	1,11	7,69	1,52
5,6	30	5	6,0	2,0	5,41	4,25	15,97	1,72	25,36	2,16	6,59	1,10	9,41	1,57
		4			4,96	3,90	18,86	1,95	29,90	2,45	7,81	1,25	11,00	1,69
6,3	63	5	7,0	2,3	6,13	4,81	23,10	1,94	36,80	2,44	9,52	1,25	13,70	1,74
		6			7,28	5,72	27,06	1,93	42,91	2,43	11,18	1,24	15,90	1,78
		4,5			6,20	4,87	29,04	2,16	46,03	2,72	12,04	1,39	17,00	1,88
		5			6,86	5,38	31,94	2,16	50,67	2,72	13,22	1,39	18,70	1,90
7	70	6	8	2,7	8,15	6,39	37,58	2,15	59,64	2,71	15,52	1,38	22,10	1,94
		7			9,42	7,39	42,98	2,14	68,19	2,69	17,77	1,37	25,20	1,99
		8			10,67	8,37	48,16	2,12	76,35	2,68	19,97	1,37	28,20	2,02
		5			7,39	5,80	39,53	2,31	62,65	2,91	16,41	1,49	23,10	2,02
		6			8,78	6,89	46,57	2,30	73,87	2,90	19,28	1,48	27,30	2,06
7,5	75	7	9	3	10,15	7,96	53,34	2,29	84,61	2,89	22,07	1,47	31,20	2,10
		8			11,50	9,02	59,84	2,28	94,89	2,87	24,80	1,47	35,00	2,15
		9			12,83	10,07	66,10	2,27	104,72	2,86	27,48	1,46	38,60	2,18
		5,5			8,63	6,78	52,68	2,47	83,56	3,11	21,80	1,59	30,90	2,17
8	80	6			9,38	7,36	56,97	2,47	90,40	3,11	23,54	1,58	33,40	2,19
	00	7			10,85	8,51	65,31	2,45	103,60	3,09	26,97	1,58	38,30	2,23
		8			12,30	9,65	73,36	2,44	116,39	3,08	30,32	1,57	43,00	2,27
		6			10,61	8,33	82,10	2,78	130,00	3,50	33,87	1,79	48,10	2,43
9	90	7	10	3,3	12,28	9,64	94,30	2,77	149,67	3,49	38,94	1,78	55,40	2,47
	70	8	10	3,3	13,93	10,93	106,11	2,76	168,42	3,48	43,80	1,77	62,30	2,51
		9			15,60	12,20		2,75	186,00	3,46	48,60	1,77	68,00	2,55
		6,5			12,82	10,06	122,10	3,09	193,46	3,89	50,73	1,99	71,40	2,68
		7			13,75	10,79	130,59	3,08	207,01	3,88	54,16	1,98	76,40	
10	100	8	12	4	15,60	12,25	147,19	3,07	233,46	3,87	60,92	1,98	,	2,75
		10			19,24	15,10	178,95	3,05	283,83	3,84	74,08	1,96	110,00	
		12			22,80	17,90	208,90	3,03	330,95	3,81	86,84	1,95	122,00	2,91

		14			26,28	20,63	237,15	3,00	374,98	3,78	99,32	1,94	138,00	2.99
		16			29,68	23,30	263,82	2,98	416,04	3,74	111,61	1,94	152,00	1 '
	110	7			15,15	11,89	175,61	3,40	278,54	4,29	72,68	2,19		
11	110	8	12	4	17,20	13,50	198,17	3,39	314,51	4,28			116,00	1 '
		8			19,69	15,46	294,36	3,87	466,76	4,87			172,00	
		9			22,0	17,30	327,48	3,86	520,00	4,86	135,88	2,48	192,00	3,40
10.5	105	10	1.4	1.0	24,33	19,10	359,82	3,85	571,04	4,84	148,59	2,47	211,00	3,45
12,5	125	12	14	4,6	28,89	22,68	422,23	3,82	670,02	4,82	174,43	2,46	248,00	3,53
		14			33,37	26,20	481,76	3,80	763,90	4,78	199,62	2,45	282,00	3,61
		16			37,77	29,65	538,56	3,78	852,84	4,75	224,29	2,44	315,00	3,68
		9			24,72	19,41	465,72	4,34	739,42	5,47	192,03	2,79	274,00	3,78
14	140	10	14	4,6	27,33	21,45	512,29	4,33	813,62	5,46	210,96	2,78	301,00	3,82
		12			32,49	25,50	602,49	4,31	956,98	5,43	248,01	2,76	354,00	3,90
		10			31,43	24,67	774,24	4,96	1229,10	6,25	319,38	3,19	455,00	4,30
		11			34,42	27,02	844,21	4,95	1340,06	6,24	347,77	3,18	496,00	4,35
		12			37,39	28,35	912,89	4,94	1450,00	6,23	357,78	3,17	537,00	4,39
16	160	14	16	5,3	43,57	33,97	1046,47	4,92	1662,13	6,20	430,81	3,16	615,00	4,47
		16			49,07	38,52	1175,19	4,89	1865,73	6,17	484,64	3,14	690,00	4,55
		18			54,79	43,01	1290,24	4,87	2061,03	6,13	537,46	3,13	771,00	4,63
		20			60,40	47,44	1418,85	4,85	2248,26	6,10	589,43	3,12	830,00	4,70

Сталь прокатная угловая неравнополочная (ГОСТ 8510–86)

Обозначения:

B — ширина большой полки;

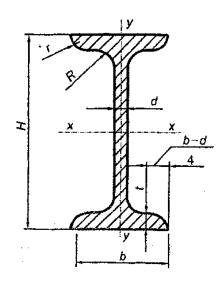
b — ширина малой полки;

d-: толщина полки;

R — радиус внутреннего закругления;

r — радиус закругления полки;

J – момент инерции;


i – радиус инерции;

 x_0 , y_0 – расстояния от центра тяжести до наружных граней полок.

	В	b	7	D	r				Сп	рав	очні	ые ве	лич	ины	ДЛЯ	і осей		
№ про-	D	v	и	Λ		Площадь	Масса 1 м	<i>x</i> -	- <i>x</i>	y	-y	x_1 -	- <i>x</i> ₁	<i>y</i> ₁ -	- y ₁	<i>u</i> –	u	Угол наклона
филя			# N #			сечения A , см 2	длины, кг	J_x	i_x ,	J_y ,	i_y ,	J_{x1} ,	y ₀ ,	J_{y1} ,	x_0 ,	$J_{u \text{ min}}$,	$m{i}_{u ext{ min}}$	оси tga
		IV	1M					cm ⁴	СМ	cm ⁴	СМ	cm ⁴	CM	cm ⁴	CM	cm ⁴	СМ	
5,6/3,6	56	36	4	6 (2,0	3,58	2,81	11,4	1,7,8	3,70	1,02	23,2	1,82	6,25	0,84	2,19	0,78	0,506
3,0/3,0	50	30	5	υ,ι	72,0	4,4-1	3,46	13,8	1,77	4,48	1,01	29,2	1,86	7,91	0,88	2,66	0,78	0,404
			4			4,04	3,17	16,3	2,01	5,16	1,13	33,0	2,03	8,51	0,91	3,07	0,87	0,397
6 2/4 0	63	40	5	7.0	2	4,98	3,91	19,9	2,00	6,26	1,12	41,4	2,08	10,8	0,95	3,73	0,86	0,396
6,3/4,0	03	40	6	7,0	2,3	5,90	4,63	23,3	1,99	7,28	1,11	49,9	2,12	13,1	0,99	4,36	0,86	0,393
			8			7,68	6,03	29,6	1,96	9,15	1,09	66,9	2,20	17,9	1,07	5,58	0,85	0,386
7/4,5	70	45	5	7,5	52,5	5,59	4,39	27,8	2,23	9,05	1,27	56,7	2,28	15,2	1,05	5,34	0,98	0,404

			5			6,11	4,79	34.8	2.39	12.5	1.43	69.7	2,39	20.8	1.17	7,24	1,09	0,436
7,5/5	75	50		8	2,7	7,25	5,69			ł .			2,44	ł .		8,48	1,08	0,435
7,373	,5	50	8	Ü	۷, ۱	9,47	7,43	i	i e	f	1,40	i i	i i	f			1,07	0,430
			5			6,36	4,99	_			1,41				1,13	7,58	1,09	0,387
8/5	80	50	6	8	2,7	7,55	5,92	í	ſ	ſ	1,40	ſ	ĺ	1		8,88	1,08	0,386
			5,5			7,86	6,17				1,58		2,92		1	11,8	1,22	0,384
9/5,6	90	56		9	3	8,54	6,70	ł	ŀ	ł	1,58	ł		1	1,28	12,7	1,22	0,384
9/3,0	90	50	8	7	3	11,18	8,77				1,56	ŀ		ł		,	1,21	0,380
			6			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				1,79				1,42			·
		F	7			9,59	7,53 8 70		t .	l .	1,79	ŀ				18,2 20,8	1,38	0,393 0,392
10/6,3	100	63	/ Q	10	3,3	11,1 12,6	8,70 9,87	i i		1	1,78	i		1			1,37 1,36	0,392
		-	_			•		i i	i e	ł		i i	i	Î			1	·
	+		10			15,5	12,1				1,75						1,35	0,387
11/7	110	70	5,5	10	3,3	11,4	8,98	1	3,53	i .		286	ĺ	1		26,9	1,53	0,402
	110	, 0			٠,٠	13,9	10,9	_			1,98				1,64	32,3	1,52	0,400
			7			14,1	11	227	4,01	ł.	2,29	ŧ.	4,0 1	Į.		43,4	1,76	0,407
12.5/9	125	90	8	1 1	27	16	12,5	256	4	83	2,28	518	4,05	137	1,84	48,8	1,75	0,406
12,5/8	125	80	10	11	3,7	19,7	15,5	312	3,98	100	2,26	649	4,14	173	1,92	59,3	1,74	0,404
			12			23,4	18,3	365	3,95	117	2,24	781	4,22	210	2	69,5	1,72	0,400
1.4/0	1.40	00	8	10	4	18	14,0	364	4,49	120	2,58	727	4,49	194	2,03	70,3	1,98	0,411
14/9	140	90	10	12	4	22,2	17,5	444	4,47	146	2,56	911	4,58	245	2,12	85,5	1,96	0,409
			9			22,9	18	606	5,15	186	2,85	1	5,19	300	2,23	110	2,2	0,391
			10			25,3	19,8	667	5,13	204	2,84	1	5,23	335	2,28	121	2,19	0,390
16/10	160	100	12	13	4,3	30	23,6	784	5,11	239	2,82	1	5,32	î		142	2,18	0,388
		-	14			34,7	27,3	897	5,08	272	2,8	1910	5,40	477	2,43	162	2,16	0,385

Сталь прокатная-балки двугавровые (ГОСТ 82319-89)

Обозначения:

H – высота Балки;

b — ширина полки;

d – толщина стенки;

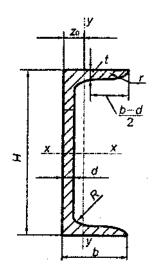
t — средняя толщина полки;

R — радиус внутреннего закругления;

r – радиус закругления полки;

J – момент инерции;

W — момент сопротивления;


S — статический момент полусечения;

i – радиус инерции.

			Pa	змер	ы, м	1M		Пламат азмания		Справоч	чные	велич	ины дј	ія осей	
№ профиля	Масса 1 м длины, кг	77	1.	.1	_	D		Площадь сечения, A , см 2		<i>x</i> –	x			y - y	
		H	b	d	ľ	R	r	A, CM ⁻	J_x , см ⁴	W_x , cm ³	<i>i</i> _x , cm	S_x , cm ³	J_y , см 4	W_y , cm ³	<i>i_y</i> , см
10	9,46	100	55	4,5	7,2	7	2,5	12,0	198	39,7	4,06	23,0	17,9	6,49	1,22
12	11,5	120	64	4,8	7,3	7,5	3	14,7	350	58,4	4,88	33,7	27,9	8,72	1,38
14	13,7	140	73	4,9	7,5	8	3	17,4	572	81,7	5,73	46,8	41,9	11,5	1,55
16	15,9	160	81	5,0	7,8	8,5	3,5	20,2	873	109	6,57	62,3	58,6	14,5	1,70
18	18,4	180	90	5,1	8,1	9	3,5	23,4	1290	143	7,42	81,4	82,6	18,4	1,88
18a	19,9	180	100	5,1	8,3	9	3,5	25,4	1430	159	7,51	89,8	114	22,8	2,12
20	21,0	200	100	5,2	8,4	9,5	4	26,8	1 840	184	8,28	104	115	23,1	2,07

20a	22,7	200 110	5,2	8,6	9,5	4	28,9	2 030	203	8,37	114	155	28,2	2,32
22	24,0	220 110	5,4	8,7	10	4	30,6	2 550	232	9,13	131	157	28,6	2,27
22a	25,8 .	220 120	5,4	8,9	10	4	32,8	2 790	254	9,22	143	206	34,3	2,50
24	27,3	240-115	5,6	9,5	10,5	4	34,8	3 460	289	9,97	163	198	34,5	2,37
24a	29,4	240 125	5,6	9,8	10,5	4	37,5	3 800	317	10,1	178	260	41,6	2,63
27	31,5	270 125	6,0	9,8	11	4,5	40,2	5 010	371	11,2	210	260	41,5	2,54
27a	33,9	270 135	6,0-	10,2	11	4,5	43,2	5 500	407	11,3	229	337	50,0	2,80
30	36,5	300 135	6,5	10,2	12	5	46,5	7 080	472	12,3	268	337	49,9	2;69
30a	39,2	300 145	6,5	10,7	12	5	49,9	7 780	518	12,5	292	436	60,1	2,95
33	42,2	330 140	7,0	11,2	13	5	53,8	9 840	597	13,5	339	419	59,9	2,79
36	48,6	360 145	7,5	12,3	14	6	61,9	13 380	743	14,7	423	516	71,1	2,89
40	57	400 155	8,3	13,0	15	6	72,6	19 062	953	16,20	545	667	86,1	3,03
45	66,5.	450 160	9,0	14,2	16	7	84,7	27 696	1 231 -	18,10	708	808	101	3,09
50	78,5	500 170	10,0	$15, \overline{2}$	17	7	100	39 727	1 589	19,90	919	1 043	123	3,23
55	92,6	550 180	11,0	16,5	18	7	118	55 962	2 035	21,80	1 181	1 356	151	3,39
60	108	600 190	12,0	17,8	, 20	8	138	76 806	2 560	23,60	1491	1 725	182	3,54

Сталь прокатная – швеллеры (ГОСТ 8240-89)

Обозначения:

H – высота швеллера;

b — ширина полки;

d – толщина стенки;

t — средняя толщина полки;

R — радиус внутреннего закругления;

r – радиус закругления полки;

J – момент инерции;

W- момент сопротивления;

S — статический момент полусечения;

i – радиус инерции;

 z_0 – расстояние от оси y - y до наружной грани стенки.

				P	азмер	ы, м	М			Спра	вочн	ые вел	ичины	для ос	ей	
№ про-	Масса 1 м длины,							Площадь сечения А,		<i>x</i> –	x			y-y		
филя	КГ	H	b	d	t	R	r	CM ²	J_x , cm ⁴	<i>W</i> _x , см ³	<i>i_x,</i> см	S _x , см ³	J_y , cm ⁴	W_y , cm ³	i _y , cm	z0, см
5	4,84	50	32	4,4	7,0	6	2,5	6,16	22,8	9,10	1,92	5,59	5,61	2,75	0,954	1,16
6,5	5,90	65	36	4,4	7,2	6	2,5	7,51	48,6	15,0	2,54	9,00	8,70	3,68	1,08	1,24'
8	7,05	80	40	4,5	7,4	6,5	2,5	8,98	89,4	22,4	3,16	13,3	12,8	4,75	1,19	1,31
10	8,59	100	46	4,5	7,6	7	3	10,9	174	34,8	3,99	20,4	20,4	6,46	1,3.7	1,44
12	10,4	120	52	4,8	7,8	7,5	3	13,3	304	50,6	4,78	29,6	31,2	8,52	1,53	1,54
14	12,3	140	58	4,9	8,1	8	3	15,6	491	70,2	5,60	40,8	45,4	11,0	1,70	1,67

14a	13,3	140	62	4,9	8,7	8	3	17,0	545	77,8	5,66	45,1	57,5	13,3	1,84	1,87
16	14,2	160	64	5,0	8,4	8,5	3,5	18,1	747	93,4	6,42	54,1	63,3	13,8	1,87	1,80
16a	15,3	160	68	5,0	9,0	8,5	3,5	19,5	823	103	6,49	59,1	78,8	16,4	2,01	2,00
18	16,3	180	70	5,1	8,7	9	3,5	20,7	1 090	121	7,24	69,8	86,0	17,0	2,04	1,94
18a	17,4	180	74	5Д	9,3	9	3,5	22,2	1 190	132	7,32	76,1	105	20,0	2,18	2,13
20	18,4	200	76	5,2	9,0	9,5	4	23,4	1 520	152	8,07	87,8	113	20,5	2,20	2,07
20a	19,8	200	80	5,2	9,7	9,5	4	25,2	1 670	167	8,15	95,9	139	24,2	2,35	2,28
22	21,0	220	82	5,4	9,5	10	4	26,7	2 110	192	8,89	110	151	25,1	2,37	2,21
22a	22,6	220	87	5,4	10,2	10	4	28,8	2 330	212	8,99	121	187	30,0	2,55	2,46
24	24,0	240	90	5,6	10,0	10,5	4	30,6	2 900	242	9,73	139	208	31,6	2,60	2,42
24a	25,8	240	95	5,6	10,7	10,5	4	32,9	3 180	265	9,84	151	254	37,2	2,78	2,67
27	27,7	270	95	6,0	10,5	11	4,5	35,2	4 160	308	10,9	178	262	37,3	2,73	2,47
30	31,8	300	100	6,5	11,0	12	5	40,5	5 810	387	12,0	224	327	43,6	2,84	2,52
33	36,6	330	105	7,0	11,7	13	5	46,5	7 980	484	13,1	281	410	51,8	2,97	2,59
36	41,9	360	110	7,5	12,6	14	6	53,4	10 820	601	14,2	350	513	61,7	3,10	2,68
40	48,3	400	115	8,0	13,5	15	6	61,5	15 220	761	15,7	444	642	73,4	3,23	2,75

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОСТЕЙШИХ ПЛОСКИХ ФИГУР

Вид сечения	Пло- щадь сече- ния A, см ²	Статический момент отсеченной части площади $S_x^{\text{otc}} = \int_A Y dA,$ см 3	Осевой момент инерции сечения $J_x = \int_A Y^2 dA$, см4	Осевой момент сопротивления $W_x = \frac{J_x}{y_{max}},$ см3	Осевой радиус инерции сечения $i_x = \sqrt{\frac{J_x}{A}},$ см
h_b	bh	$\frac{bh^2}{2}$	$\frac{bh^3}{12}$	$\frac{bh^2}{6}$	0,29 <i>h</i>
a a	a^2	$\frac{a^3}{8}$	$\frac{a^4}{12}$	$\frac{a^3}{6}$	0,29 <i>a</i>
y a a	$\frac{\pi d^2}{4}$	$0,08d^3$	$\frac{\pi d^4}{64}$	$\frac{\pi d^3}{32}$	0,25 <i>d</i>

ОПРЕДЕЛЕНИЕ ПЛОЩАДИ И ЦЕНТРА ТЯЖЕСТИ ПРОСТЕЙШИХ ФИГУР

Фигура	Площадь	Абсциссы центра тяжести		
X1 X2	lh	$\frac{l}{2}$	$\frac{x_2}{\frac{l}{2}}$	
£ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>lh</u> 2	$\frac{l}{3}$	$\frac{2}{3}l$	
z	$\frac{l}{3}lh$	$\frac{l}{4}$	$\frac{3}{4}l$	
X1 X2	$\frac{2}{3}lh$	$\frac{l}{2}$	$\frac{l}{2}$	
E 1 1	$\frac{2}{3}lh$	$\frac{3}{8}l$	$\frac{5}{8}l$	
x ₁	$\frac{2}{3}lh$	$\frac{l}{2}$	$\frac{l}{2}$	

ВЕЛИЧИНА ПРОГИБА НАИБОЛЕЕ ЧАСТО ВСТРЕЧАЮЩИХСЯ БАЛОК

Схема нагрузки	Величина прогиба f_{max}
l F	$\frac{Fl^3}{3EJ_x}$
	$rac{ml^2}{2EJ_x}$
	$\frac{ql^4}{8EJ_x}$
a b	$\frac{Fa^2}{6EJ_x}(3l-a)$
a b	$\frac{ma^2}{2EJ_x}(2l-a)$
g a l	$\frac{qa^3}{6EJ_x}(4l-a)$
1/2 F 1/2 1/2	$rac{Fl^3}{48EJ_x}$
	$\frac{5ql^4}{384EJ_x}$

Схема нагрузки	Величина прогиба $f_{\it max}$
F F	$\frac{Fa}{24EJ} \left(\frac{3l^2}{a^2} - 4 \right)$
a b	$\frac{Fbl^2}{27EJ} \left(1 - \frac{b^2}{l^2}\right) \sqrt{3\left(1 - \frac{b^2}{l^2}\right)}$
a b m	$\frac{mbl}{4EJ} \left(\frac{b}{l} - \frac{l}{4b} \right)$ при $a > b$
l m	$\frac{ml^2}{16EJ}$
a b	$\frac{qab^3}{24EJ}\left(4-3\frac{b}{l}\right)$
a a man	$\frac{qabl^2}{24EJ}\left(1+\frac{b}{l}-\frac{b^2}{l^2}\right)$

КОЭФФИЦИЕНТЫ ПРОДОЛЬНОГО ИЗГИБА

Гибкость λ	Ст. 3, Ст. 4	Ст. 5	Чугун	Дерево (сосна, ель)
0	1	1	1	1.
10	0,99	0,98	0,97	0,99
20	0,97	0,96	0,91	0,97
30	0,95	0,93	0,81	0,93
40	0,92	0,90	0,69	0,87
50	0,89	0,85	0,57	0,80
60	0,86	0,80	0,44	0,71
70	0,81	0,74	0,34	0,61
80	0,75	0,67	0,26	0,49
90	0,69	0,59	0,20	0,38
100	0,60	0,50	0,16	0,31
110	0,52	0,43		0,25
120	0,45	0,37		0,22
130	0,40	0,32		0,18
140	0,36	0,28		0,16
150	0,32	0,25		0,14
160	0,29	0,23		0,12
170	0,26	0,21		0,11
180	0,23	0.19		0,10
190	0,21	0,17		0,09
200	0,19	0,15		0,08
210	0,17	0,14		
220	0,16	0,13		