МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ БЕЛАРУСЬ ГОСУДАРСТВЕНОЕ ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ «БЕЛЭНЕРГО» УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «МИНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ КОЛЛЕДЖ»

УТВЕРЖДАЮ
Зам. директора по УР
________ Е.Г.Сайковская
________ 2018г.

«Строительные машины и оборудование»

Методические рекомендации (программа, методические указания по изучению учебной дисциплины, выполнению домашних контрольных работ)

для учащихся заочного отделения специальности 2-70 02 01 «Строительные машины и оборудование»

Автор: преподаватель спецдисциплин Лашук Е.В. ДайлидкоП.Ч

Рассмотрено и одобрено на заседании цикловой комиссии строительных дисциплин протокол № ____ от « *Gr*» ____ 2018г.

Председатель ЦК / С. 3. Мерез/

Минск, 2018г.

Общие методические рекомендации по выполнению домашней контрольной работы.

Домашняя контрольная работа выполняется в ученической тетради или на листах A-4 в соответствии с требованиями ГОСТ 2.105-95 «Общие требования к текстовым документам». В начале работы указывается вариант и перечень вопросов согласно варианту. Вопросы и условия задач записываются полностью в соответствии с контрольным заданием. Вариант домашней контрольной работы определяется по номеру в списке журнала.

Текст набирается на компьютере, печатается, либо пишется от руки на одной стороне листа (шрифт Times New Roman, размер 14, интервал полуторный, выравнивание по ширине; отступы: верхнее и нижнее поле 2 см, левое — 3 см, правое — 1,5 см). Если работа выполняется в тетради в клеточку, то ответ записывается через строчку. Если работа выполняется на стандартных листах А-4, то страницы обязательно нумеруются. Для рецензии (заключения) преподавателя необходимо оставлять 1-2 страницы в конце выполненной работы.

Текст, формулы, условные знаки, а также иллюстрации следует выполнять синими или черными чернилами. Чертежи и схемы выполняют в карандаше на отдельных листах с соблюдением правил графического оформления, предусмотренных Единой системой конструкторской документации (ЕСКД). На чертежах и схемах указывают необходимые размеры, делают поясняющие надписи, а отдельные узлы и детали, выполняемые в крупном масштабе, нумеруют по общепринятым правилам.

Для иллюстраций, разрезов, диаграмм, схем и т. п. разрешается применение копирования (ксерокопирования, светокопирования и т. п.) с дальнейшим вклеиванием их в домашнюю контрольную работу (в тетрадь). Чертежи и схемы на кальке или восковке выполнять не разрешается.

На обложке тетради или титульной стороне работы выполненной на стандартных листах A-4 должен быть наклеен заочником бланк, заполненный соответствующим образом(указывается предмет, курс, группа, фамилия, инициалы, шифр, домашний адрес, номер телефона).

Список использованной литературы и других источников должен быть оформлен библиографически правильно.

Контрольные работы необходимо выполнять в сроки, определяемые графиком, составленным отделением ПГС учреждения образования «Минский государственный энергетический колледж». После проверки работы ознакомьтесь с рецензией преподавателя, обратите внимание на замечания, при необходимости доработайте ответы. Если работа не зачтена, ее следует выполнить повторно с учетом указанных замечаний.

Критерии оценки выполнения домашней контрольной работы

Отметка «зачтено» выставляется при условии:

1. Работа выполнена в полном объеме, в соответствии с заданием, ответы на все теоретические вопросы даны полно, последовательно, в требуемых случаях иллюстрированы схемами, графиками, диаграммами и др., правильно употребляются научно-техническая терминология, ГОСТы, нормативы.

Задачи решены верно, ход решения пояснен.

2. Графические задания выполнены аккуратно, в соответствии с ГОСТами. Работа аккуратно оформлена, приведен список использованной литературы.

Работа может быть зачтена, если она содержит единичные несущественные ошибки:

- описки, неискажающие сути ответа на теоретические вопросы;
- неточности, допущенные при ответе на теоретические вопросы;
- отсутствие выводов в процессе освещения вопросов, решения задач;
- линии чертежа выполнены не в соответствии ЕСКД;
- нанесение размеров выполнено не в соответствии ЕСКД;
- -при отсутствии списка используемой литературы или несоответствие его оформления стандарту.

Отметка «не зачтено» выставляется при условии:

- 3. Работа выполнена не в полном объеме, или содержит следующие существенные ощибки:
 - не раскрыто основное содержание вопросов задания;
- ответы на теоретические вопросы полностью переписаны из учебной литературы, без адаптации к контрольному заданию;
- отдельные вопросы в работе освещены не в соответствии с вариантом задания;
- неправильно употребляются научно-техническая терминология, ГОСТы, нормативы, единицы измерения;
- для решения задач неправильно выбрана формула, допущены грубые ошибки в расчетах;
- схемы, графические задания выполнены не в полном объеме, с нарушениями требований ЕСКД.
- 4. Контрольная работа, выполненная небрежно, неразборчива подчерком, а также не по заданному варианту, возвращается учащемуся **без проверки**, с указанием причин возврата.

Задания для контрольной работы.

При написании контрольной работы все учащиеся помимо решения задач и ответов на вопросы по своим вариантам выполняют описание основных конструктивных элементов строительных машин согласно заданию, приведенному в приложении А.

Варианты к домашней контрольной работе.

Вариант№1.

- 1. Основные направления развития строительного машиностроения, его роли в современном строительстве.
- 2. Разъемные соединения деталей. Резьба, ее основные параметры.
- 3. Графическое изображения вала, оси и их элементов: шейки, шипа, пяты.
- 4. Вычертить кинематическую схему одноступенчатого цилиндрического редуктора.
- 5. Задача. Определить минимальный радиус разворота R n самоходного пневмоколесного крана КС 4362 при заданной колее B =3120 мм и базе L = 16 500мм.

Вариант№2.

- 1. Понятие о детали, узле.
- 2. Как классифицируют строительные машины.
- 3. Графическое изображения роликового подшипника.
- 4.Вычертить кинематическую схему одноступенчатого конического редуктора.
- 5.Задача. Определить эксплуатационную производительность одноковшового экскаватора с обратной лопатой ЭО-3322A с объемом ковша 0.4 м3 при условии работы в две смены. Коэффициент наполнения ковша, $K_{\rm H}=0.9\div1.2$; коэффициент разрыхления грунта, $K_{\rm p}=1.15\div1.4$, продолжительность поворота в забой 30сек, продолжительность поворота на выгрузку 20 сек, время копания за один цикл 60сек.

Вариант№3.

- 1. Основные элементы строительных машин и агрегатов.
- 2.. Резьбовые крепежные детали.
- 3. Графическое изображения радиального подшипника качения.
- 4. Вычертить кинематическую схему одноступенчатого конического редуктора.
- 5.Задача. Определить тип и общее передаточное число многоступенчатой последовательно соединенной передачи.

Дано: две пары колес с зубьями. Первая пара: z_2 - число зубьев ведомого колеса = 12; z_{I-} число зубьев шестерни (ведущего колеса) = 6; вторая пара: z_3 - число зубьев ведомого колеса = 16; z_{4-} число зубьев шестерни (ведущего колеса) = 12;

- 1.Способы предотвращения само откручивание резьбовых деталей
- 2. Понятия о передачах. Их назначение и классификация.
- 3. Привести пример графического изображения самоустанавливающегося роликового подшипника качения.
- 4. Вычертить кинематическую схему кинетически-цилиндрического редуктора.
- 5.Задача. Определить тип и общее передаточное число многоступенчато последовательно соединенной передачи. Дано: две передаточные пары. Первая пара:
- z_1 число заходов червяка = 5;
- z_2 число зубьев колеса = 25;

вторая пара

- z_3 число зубьев ведомого колеса = 12;
- z_{4} число зубьев шестерни (ведущего колеса) = 25;

Вариант№5.

- 1. Валы и оси, их назначение и виды.
- 2. Основные характеристики передач: передаточное число, коэффициент полезного действия.
- 3. Привести пример графического изображения несамоустанавливающегося роликового подшипника качения.
- 4. Вычертить кинематическую схему трёхступенчатого червячного редуктора
- 5.Задача.Определить тип и общее передаточное число многоступенчатой последовательно соединенной передачи.

Дано: две передаточные пары.

Первая - червячная пара состоит из червяка с количеством заходов червяка $z_1 = 3$ и колеса с числом зубьев $z_2 = 32$.

Вторая – цепная передача состоит из ведущего колеса

с числом зубьев $z_{I} = 10$ и ведомого колеса с числом зубьев $z_{2} = 10$.

Вариант№6.

- 1. Подшипники, их назначение, виды, конструкции.
- 2.Зубчатые передачи. Их виды, конструкции, принцип и условие работы.
- 3. Условные графические изображения механизмов в кинематических схемах строительных машин.
- 4. Вычертить кинематическую схему комбинированного редуктора, включающего коническо-цилиндрическую передачу.
- 5. Задача. Определить эксплуатационную производительность одноковшового экскаватора с обратной лопатой ЭО-3322A с объемом ковша 0.4 м3 при условии работы в две смены. Коэффициент наполнения ковша, $Kh = 0.9 \div 1.2$; коэффициент разрыхления грунта, $Kp = 1.15 \div 1.4$, продолжительность поворота в забой 30сек, продолжительность поворота на выгрузку 20 сек, время копания за один цикл 60сек.

Вариант№7.

- 1. Соединительные муфты, их назначение, виды и конструкции.
- 2. Фрикционные передачи. Их виды, конструкции, принцип и условие работы.
- 3. Привести пример графического изображения несамоустанавливающегося шарикого подшипника качения.
- 4.Вычертить кинематическую схему комбинированного редуктора, включающего червячно-зубчатую передачу.
- 5. Задача. Определить тип и общее передаточное число многоступенчатой последовательно соединенной передачи.

Дано: две передаточные пары ведущего и ведомого шкивов, расположенных на некотором расстоянии друг от друга и соединенных между собой бесконечным ремнем, натянутым на шкивы.

$$D2 = 12 \text{ mm}$$
; $D1 = 28 \text{ mm}$; $D3 = 28 \text{ mm}$; $D1 = 36 \text{ mm}$;

Вариант №8

- 1. Стандартизация деталей машин, их взаимозаменяемость, значение в строительном машиностроении.
- 2.Виды резьбы.
- 3. Привести пример графического изображения призматической шпонки.
- 4. Вычертить кинематическую схему редуктора с планетарной передачей.
- 5. Задача . Определить производительность смесительных машин циклического действия при объеме барабана 100 м3 с бункерным питании смесителя и коэффициентом выхода смеси для бетона $f = 0.65 \div 0.70$ и $f = 0.75 \div 0.85$ для растворов.

- 1. Виды резьбовых крепежей деталей и соединений, их применение в строительстве.
- 2. Ременные передачи. Их виды, конструкции, принцип и условие работы.
- 3. Привести пример графического изображения радиально-упорного шарикового подшипника качения.
- 4. Вычертить кинематическую схему редуктора, включающего волновую зубчатую передачу (разновидность планетарной передачи).
- 5.Задача .Определить энергию удара свайных молотов (всех видов), если известен вес ударной части Q, H величина рабочего хода ударной части, (м); коэффициент полезного действия (η).

- 1. Шлицевые соединения. Их назначение, виды и преимущества.
- 2. Ременные передачи. Их виды, конструкции, принцип и условие работы.
- 3. Привести пример графического изображения радиально-упорного роликового подшипника качения.
- 4. Вычертить кинематическую схему одноступенчатого редуктора, включающего цилиндрическую передачу.
- 5. Задача. Определить эксплуатационную производительность роторного траншейного экскаватора с частотой вращения ротора 120 об./мин.), с числом ковшей 24, с вместимостью ковша 3 л.

Вариант №11

- 1. Шпоночные соединения. Их назначение, виды, преимущества.
- 2. Применение редукторов в трансмиссиях строительных машин.
- 3. Привести пример графического изображения шарикового упорного подшипника качения.
- 4.Вычертить кинематическую схему многоступенчатого редуктора, включающего цилиндрическую передачу.
- 5. Задача. Определить мощность двигателя траншейного роторного экскаватора (в кВт) на копание грунта, если известно, что экскаватор имеет определенную техническую производительность 13,1 м3\час. Грунт I группы.

- 1. Заклёпочные соединения, их виды и преимущества.
- 2.Понятие о механизме.
- 3. Привести пример графического изображения сегментной шпонки.
- 4. Вычертить кинематическую схему многоступенчатого редуктора, включающего коническую передачу.
- 5.Задача. Определить эксплуатационную производительность скрепера (в м3/час), если даны вместимость ковша а (м3), группа грунта и tu продолжительность цикла (в сек). Дано: вместимость ковша q = 4,5 м3, вместимость ковша с «шапкой» Q = 6 м3. Дальность транспортирования L = 300 м. Ширина ковша b = 2,5 м, грунт разрабатывается на подъем . Грунт песок. Продолжительность цикла 70 сек. Kh = 0.85; Kp = 1,5; Kb = 0.85.

- 1. Назначение, виды и конструкции механизмов.
- 2. Сварные соединения, их виды, преимущества и недостатки.
- 3. Привести пример графического изображения клиновой шпонмки.
- 4. Вычертить кинематическую схему многоступенчатого редуктора, включающего червячную передачу.
- 5.Задача. Определить эксплуатационную производительность скрепера, если известно, что вместимость ковша q = 7 м3, вместимость ковша с «шапкой» Q = 9 м3. Дальность транспортирования L = 400 м. Ширина ковша b = 2,65 м, грунт разрабатывается под уклон. Грунт супесь. Продолжительность цикла 60 сек. Kh = 1,1; Kp = 1,1; KB = 0,9.

Вариант №14

- 1. Редукторы, их назначение, конструкции и виды.
- 2.Влияние смазки на срок службы подшипников.
- 3. Привести пример графического изображения тангенциальной шпонки.
- 4. Вычертить кинематического схему одноступенчатого червячного редуктора.
- 5. Задача. Определить производительность ковшового элеватора, предназначенного для транспортирования песка на высоту до H=10 м. Вместимость ковшей элеватора $q_1=2,4$ л. Скорость движения ковшей V=1,5 м3/сек. Элеватор вертикальный, ленточный с глубокими ковшами, шаг ковшей -0,4 м, плотность песка $\gamma=1,6$ т/м3.

- 1. Варианты скоростей, их назначение, виды, конструкции, принцип и условие работы.
- 2. Преимущества и недостатки сварных и заклёпочных соединений.
- 3. Привести пример графического изображения эвольвентного шлицевого соединения.
- 4. Вычертить кинематическую схему одноступенчатого конического редуктора.
- 5.Задача. Определить геометрический объем призмы волочения грунта впереди отвала бульдозера если известно, что ширина отвала b = 4,2 м, высота отвала h = 2,0 м, Kh = 0,85, Kp = 1,22, Kn = 1,12. Грунт супесь, угол естественного откоса -40o (ϕ)

- 1. Виды и конструкции цепных передач.
- 2. Соединительные муфты. Их назначение, виды и конструкции.
- 3. Привести пример графического изображения треугольного шлицевого соединения.
- 4.Вычертить кинематическую схему двухступенчатого цилиндрического редуктора.
- 5. Задача. Определить сменную и годовую эксплуатационную производительность строительной машины если известна техническая производительность Пт = 107,9 м3/час

Вариант №17

- 1. Виды и конструкции червячных передач.
- 2. Разъёмные и неразъёмные соединения.
- 3. Привести пример графического изображения профиля метрической резьбы.
- 4. Вычертить кинематическую схему трёхступенчатого цилиндрического редуктора.
- 5. Задача. Определить конструктивно-расчетную производительность строительной машины циклического действия, если количество единиц продукции за один цикл 100 шт., количество рабочих циклов 9ц.

Вариант №18

- 1. Требования, предъявляемые к деталям.
- 2.Виды и конструкции соединительных муфт.
- 3. Привести пример графического изображения профиля дюймовой и трубной резьбы.
- 4. Вычертить кинематическую схему двухступенчатого трёхосного цилиндрического редуктора.
- 5. Задача. Определить конструктивно-расчетную производительность строительной машины непрерывного действия (ленточного транспортера), если площадь ленты 2,7 м2, скорость движения ленты 2,5 м\сек.,

- 1. Назначение и виды валов и осей.
- 2. Конструкции, принцип и условие работы вариаторов скоростей.
- 3. Привести пример графического изображения профиля трапецеидальной симметричной и несимметричной резьбы.
- 4. Вычертить кинематическую схему планетарного редуктора.
- 5.Задача. Определить конструктивно-расчетную производительность строительной машины непрерывного действия, выдающего продукцию порциями (раствороукладчик), если количество единиц продукции 2,4 м3, скорость движения ленты 3,2 м\сек., расстояние между порциями материала 5 м.

- 1. Назначение и классификация редукторов.
- 2. Конструкции, принцип и условие работы клиноременных передач.
- 3. Привести пример графического изображения профиля круглой резьбы.
- 4.Вычертить кинематическую схему многоступенчатого цилиндического редуктора.
- 5. Определить число циклов за час работы одноковшового экскаватора, если известно, что продолжительность копания 12 сек., продолжительность поворота на выгрузку 8 сек., продолжительность выгрузки 4 сек., продолжительность поворота в забои 18 сек.

Вариант №21

- 1. Преимущества шлицевых соединений над шпоночными.
- 2. Принцип и условия работы зубчатых и червячных передач
- 3. Привести пример графического изображения фрикционного вариатора с лобовым касанием катков.
- 4.Вычертить кинематическую схему одноступенчатого редуктора, включающего кинематическую передачу.
- 5. Определить эксплуатационную производительность бульдозера при резании и перемещении грунта (м3/час), если известно, что грунт супесь, угол естественного откоса (ϕ) 20о. Длина отвала b = 3,2 м, высота отвала h = 1,3 м, коэффициент наполнения ковшей (Кн) равен 0,85, коэффициент разрыхления (Кр) равен 1,22. Время одного цикла 43 сек., а коэффициент использования машины Кв = 0,9; Π = 50 м. Средняя скорость движения 5км\ч.

- 1. Основные направления развития современного машиностроения.
- 2. Использование деталей передач в трансмиссиях строительных машин.
- 3. Приведите пример графического изображения радиального подшипника качения (шарикового самоустанавливающегося).
- 4. Вычертить кинематическую схему трёхступенчатого цилиндрического редуктора.
- 5. Определить мощность двигателя траншейного экскаватора на копание грунта, если известно, что удельное сопротивление копанию (кПа) K1 = 100 (так как грунт I группы). Техническая производительность траншейного экскаватора ПТ = 310 м3/час.

- 1. Сведения о материалах, используемых для изготовления машин: сталях, чугунах, цветных металлов и сплавов, пластмассах.
- 2.Основные характеристики передач: передаточное число, КПД.
- 3. Условные графические изображения механизмов в кинематических схемах строительных машин.
- 4. Вычертить кинематическую схему одноступенчатого конического редуктора.
- 5. Определить часовую производительность бетона-смесителя циклического действия с барабаном $V\Pi P = 100 \text{ л}, \text{ tu} = 160 \text{ сек.}; K = 0,66.$

Вариант №24

- 1. Соединительные муфты, их назначение, виды и конструкции.
- 2.Виды резьбы.
- 3. Приведите пример графического изображения радиально-упорного шарикового подшипника качения.
- 4. Вычертить кинематическую схему кинитическо-цилиндрического редуктора.
- 5. Задача. Определить часовую производительность бетона-смесителя непрерывного действия с диаметром лопастей смесителя (d) 0,6 м; коэффициент наполнения сечения корпуса смесителя KH = 0, 28 0,34; VПР = 1 м/с.

Вариант №25

- 1. Шлицевые соединения. Их назначение, виды и преимущества.
- 2. Применение редукторов в трансмиссиях строительных машин.
- 3. Приведите пример графического изображения сегментной шпонки.
- 4.Задача. Вычертить кинематическую схему комбинированного редуктора, включающего коническо-цилиндрическую передачу.
- 5.3адача. Подобрать 4-ветвевой строп для подъема плит перекрытий массой до 5.7 т. Необходимые для расчета размеры: a = 2,6 м, b = 5,6 м, $h_c = 1,5$ м.

- 1. Назначение, виды и конструкции механизмов.
- 2.Влияние смазки на срок службы подшипников.
- 3. Приведите пример графического изображения эвольвентного шлицевого соединения.
- 4. Вычертить кинематическую схему комбинированного редуктора, включающего червячно-зубчатую передачу.
- 5.Задача. Определить параметры для крана при монтаже фундаментных блоков размером $500 \times 600 \times 1200$ (мм); весом 1,5 т; отмостка -0.6 м; срезка растительного грунта 0,2; пролет 6 м; масса такелажной оснастки 0,195 т; глубина выемки 1,2 м; m=0,5; верх фундамента 1,8 м.

- 1. Виды и конструкции цепных передач.
- 2. Разъёмные и неразъёмные соединения
- 3. Приведите пример графического изображения профиля дюймовой и трубной резьбы.
- 4. Вычертить кинематическую схему многоступенчатого редуктора, включающего коническую передачу.
- 5. Определить параметры для крана при монтаже плит перекрытия размером 6500 x 3000x 220 (мм); весом 2,8 т; срезка растительного грунта 0,2; пролет 6,5 м; масса такелажной оснастки 0,195 т; верх стены 4,8 м; высота балки 220 мм.

Вариант №28

- 1. Назначение и виды валов и осей.
- 2. Конструкция, принцип и условия работы клин мерных передач.
- 3. Приведите пример графического изображения профиля круглой резьбы.
- 4.Вычертить кинематическую схему трёхступенчатого цилиндрического редуктора.
- 5.Задача. Определить часовую производительность бетона-смесителя циклического действия с барабаном $V\PiP = 100 \text{ л}$, tu = 160 сек.; K = 0.66.

Вариант №29

- 1. Заклёпочные соединения, их виды и преимущества.
- 2. Разъёмные соединения. Резьба, её основные параметры.
- 3. Приведите пример графического изображения несамоустанавливающегося шарикового подшипника качения.
- 4.Вычертить кинематическую схему одноступенчатого червячного редуктора.
- 5. Задача. Определить параметры для крана при монтаже плит перекрытия размером 6500 x 3000x 220 (мм); весом 2,8 т; срезка растительного грунта 0,2; пролет 6,5 м; масса такелажной оснастки 0,195 т; верх стены 4,8 м; высота балки 220 мм.

- 1. Шпоночные соединения. Их назначение, виды, преимущества.
- 2.Виды резьбы.
- 3. Приведите пример графического изображения профиля трапецеидальной симметричной и несимметричной резьбы.
- 4. Вычертить кинематическую схему двухступенчатого трёхосного цилиндрического редуктора.
- 5. Задача. Подобрать 4-ветвевой строп для подъема плит перекрытий массой до
- 5.7 т. Необходимые для расчета размеры: a = 2,6 м, b = 5,6 м, hc = 1,5 м.

Приложение А.

Выполнить описание основных конструктивных элементов строительных машин,

приложить схему, рисунок или ксерокопию иллюстрации в произвольном масштабе описываемой машины.

№ варианта	Наименование машины	
1	Кран самоходный стреловой на пневмоколесным ходу	
2	Лебедка с ручным приводом	
3	Кран самоходный стреловой на шасси автомобильного типа	
4	Бульдозер с поворотным отвалом	
5	Автомобильный гидроподъемник	
6	Автогрейдер	
7	Кран самоходный стреловой на гусеничном ходу	
8	Скрепер	
9	Кран мачтовый	
10	Бульдозер с неповоротным отвалом	
11	Кран башенный приставной	
12	Грейдер – элеватор	
13	Каток на пневмошинах	
14	Кран башенный с поворотной башней	
15	Дизельный сваебойный молот	
16	Подъемник грузовой	
17	Щековая дробилка с простым движением щеки	
18	Кран башенный с неповоротной башней	
19	Гравитационный бетонный смеситель	
20	Глубинная вибромашина с гибким валом	
21	Экскаватор одноковшовый – прямая лопата	
22	Автобетоносмеситель	
23	Подъемник грузопассажирский	
24	Малярный (окрасочный) агрегат	
25	Экскаватор одноковшовый – обратная лопата	
26	Машина для строгания деревянных полов	
27	Машина для прикатки рулонных кровельных материалов	
28	Автогрейдер	
29	Манипулятор на базе одноковшового экскаватора	
30	Манипулятор для монтажа перегородок.	

ГОСУДАРСТВЕННОЕ ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЭЛЕКТРОЭНЕРГЕТИКИ «БЕЛЭНЕРГО» УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «МИНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ КОЛЛЕДЖ»			
	(наименов	вание предмета)	
	Контрольн	ая работа №1	
	Bap	иант №	
	(Фа	амилия,	
	имя, отчес	ство учащегося)	
Группа	Курс	Шифр	
Специально	сть: Промышлен	ное и гражданское строительство	
Адрес учаще			