МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ БЕЛАРУСЬ ГОСУДАРСТВЕННОЕ ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЭЛЕКТРОЭНЕРГЕТИКИ «БЕЛЭНЕРГО» УО «МИНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ КОЛЛЕДЖ»

Турбинные установки ТЭС

Методические указания по выполнению домашней контрольной работе № 1 для учащихся заочной формы получения образования

2-43 01 04 70	nuobne siexpureci	ше отанции
	название специальности)	
Разработал преподаватель _	(подпись)	Станкевич А. В. (ФИО)
Рассмотрено и одобрено на засед	дании цикловой комис	ссии
enequanounx nunconexi	шиних дисци	rell II
	(/	
(наимен	ование цикловой комисси	и)
Протокол № <u>9</u> от <u>18.03</u>	_20 <i>Д1</i> _г.	
Председатель цикловой комисси	подпись)	<u>Ю.П. Плеско</u> (ФИО)
Согласовано	,	
Методист колледжа	(поливер)	<u>О.В. Какорина</u> (ФИО)
Заведующий заочным отделение	(<u>А.А. Куцов</u> (ФИО)

Содержание

1 Пояснительная записка	3
2 Краткое содержание программы	4
3 Общие требования по оформлению домашней контрольной работы .	7
4 Методические указания по выполнению домашней контрольной	
работы	9
5 Задания для домашних контрольных работ	11
6 Оценка результатов учебной деятельности при выполнении домашн	ней
контрольной работы	16
7 Литература	17

1. Пояснительная записка

Программой учебной дисциплины «Турбинные установки ТЭС» базируется на знаниях, умениях и навыках, полученных учащимися в ходе изучения таких учебных дисциплин как «Физика», «Математика», «Теоритические основы теплотехники» для получения практических навыков по решению задач, связанных с расчетом гидравлических систем, выбором насосов и определение режима их работы.

В результате изучения дисциплины «Турбинные установки ТЭС» учащиеся должны научиться правильно эксплуатировать турбинные установки и системы, турбинное оборудование тепловых электрических станций, грамотно выполнять расчеты и выбирать дополнительное оборудование при проектировании.

Целью изучения учебной дисциплины «турбинные установки ТЭС» является формирование у учащихся знаний основных на законах гидрогазодинамики, приобретении практических умений выполнять элемен расчеты; 0 конструктивном выполнении И эксплуатационных характеристиках турбинного оборудования, умений подбора турбинного оборудования на основании гидродинамических расчетов; формирование профессиональной компетентности в области турбинных установок.

Программный учебный материал учебной дисциплины «Турбинные установки ТЭС» тесно связан с программным учебным материалом специальных дисциплин «Котельные установки ТЭС», «Теоретические основы теплотехники», «Теплотехнические измерения».

В результате изучения дисциплины «Турбинные установки ТЭС» учащиеся должны приобрести соответствующие знания и умения.

2. Краткое содержание программы

Учебная дисциплина «Турбинные Установки ТЭС» изучается в соответствии с учебным планом и программой в количестве 190 часов.

Раздел 1. Основные понятия о паро- и газотурбинных установках

- 1.1 Основные понятия о паро- и газотурбинных установках.
- 1.2 Типы и классификация турбин.

Вопросы для самоконтроля:

- 1. Что такое турбина?
- 2. Какова разница между паротурбинными установками и газотурбинными установками?
 - 3. Что такое давление и какова ее размерность в системе единиц СИ?
 - 4. Перечислить типы турбин
 - 5. Какие типы турбин не изготавливаются для АЭС?
 - 6. Назначение газотурбинной установки?
 - 7. Схема газотурбинной установки?
 - 8. Схема паротурбинной установки?

Раздел 2. Основы газодинамики пара при течении через каналы турбинных решеток

- Тема 2.1 Основы газодинамики пара при течении через каналы турбинных решеток
 - Тема 2.2 Конструкция и принцип действия турбинной ступени.

Вопросы для самоконтроля:

- 1. Как будет изменяться в трубе скорость протекающего пара при наличии сил трения?
 - 2. Запишите уравнения неразрывности для выходных сечений сопловой

и рабочей решеток ступени и объясните их смысл?

- 3. Что такое сопловая решетка?
- 4. Что такое рабочая решетка?
- 5. Запишите уравнения первого закона термодинамики для потока пара.

Раздел 3. Турбинная ступень и ее расчет

- Тема 3.1 Турбинная ступень и ее расчет.
- Тема 3.2 Активная ступень, график изменения давления и скорости, процесс в h-s диаграмме.
- Тема 3.3 Реактивная ступень, график изменения давления и скорости, Процесс в h-s диаграмме
 - Тема 3.4 Потери энергии в турбинной ступени

Вопросы для самоконтроля:

- 1. Что такое степень реакции ступени?
- 2. Для чего строят треугольники скоростей?
- 3 Что такое активная ступень?
- 4. Что такое реактивная ступень?
- 5. Перечислите потери, которые учитывают относительный лопаточный КПД ступени. Как связаны эти потери с коэффициентами скорости?
- 6. Какими потерями отличаются относительные внутренний и лопаточный КПД?

Раздел 4. Многоступенчатые турбины

- Тема 4.1 Многоступенчатые паровые турбины
- Тема 4.2 Схемы проточной части.
- Тема 4.3 Осевые усилия.
- Тема 4.4 Потери энергии в турбине.

Вопросы для самоконтроля:

- 1. Почему турбины выполняют многоступенчатыми?
- 2. Перечислить схемы проточной части?
- 3. Что такое возврат теплоты?
- 4. Как работает концевое уплотнения турбины?
- 5. Перечислить потери в многоступенчатой турбине.

Перечень практических занятий

- ПЗ №1. Построение процесса пара в турбине в h-s диаграмме.
- ПЗ №2. Определение расхода пара на турбину.

3. Общие требования по оформлению домашней контрольной работы

В соответствии с требованиями ГОСТ 2.105-95 «ЕСКД. Требования к оформлению текстовых документов» оформление домашней контрольной работы должно осуществляться по следующим правилам: все части пояснительной записки следует излагать только на одном из государственных языков – белорусском или русском.

На лицевой части работы помещается наклейка установленного образца. В наклейке обязательно заполняются все графы, фамилия имя отчество пишется полностью.

Вопросы и задачи контрольной работы переписываются по порядку, без сокращений. На каждый переписанный вопрос сразу же дается ответ. После каждого ответа на вопрос выделяется свободное место для замечаний, а в конце работы 1,2 страницы для рецензии.

Домашняя контрольная работа может быть выполнена рукописно в отдельной тетради «в клеточку» с пронумерованными страницами и отведенными полями шириной 30 мм. Возможно выполнение работы на компьютере и отпечатанный текст на белой бумаге формата А4 с одной стороны листа. Оформление работы должно быть единообразным, с соблюдением следующих типографических требований:

- поля: левое 30 мм, правое 15 мм, верхнее 20 мм, нижнее 20 мм;
 - шрифт текста размером 14 пт., гарнитурой Times New Roman;
- шрифт заголовков (все прописные), подзаголовков 16 пт., гарнитурой Times New Roman;
 - межстрочный интервал полуторный;
 - отступ красной строки 1,25;
- номера разделов, подразделов, пунктов и подпунктов следует выделять полужирным шрифтом;
 - разрешается использовать компьютерные возможности акцентирования

внимания на определённых терминах, формулах, теоремах, применяя шрифты разной гарнитуры;

– выравнивание текста – по ширине, перенос слов не допускается.

При делении вопроса на пункты и подпункты необходимо, чтобы каждый пункт содержал законченную информацию.

Вопросы должны иметь порядковые номера в пределах всего документа, обозначенные арабскими цифрами без точки. Наименование вопросов следует располагать по центру строки без точки в конце, прописными буквами жирным начертанием, отделяя от текста одной пустой строкой.

4. Методические указания по выполнению домашней контрольной работы

Раздел 1. Основные понятия о паро- и газотурбинных установках.

При изучении раздела необходимо обратить внимание на понятия паротурбинной установки, газотурбинной установки.

Разобрать тепловые схемы. Найти отличия между газотурбинными установками и паротурбинными установками. Знать маркировки турбин. Уделить внимание принципу действия турбины. Знать основные понятия.

[4], c. 242-247, c. 9-12

Раздел 2. Основы газодинамики пара при течении через каналы турбинных решеток.

При изучении данного раздела необходимо изучить строение турбинной решетки и типы решеток. Необходимо знать уравнение неразрывности, уравнения количества движения, уравнения сохранения энергии. Изучить сверхзвуковое обтекание турбинных решеток. Научиться находить ускорение потока в канале, определять параметры торможения, находить число Маха. Потери энергии при течении пара в каналах турбинных решеток.

[4], c. 31-34

Раздел 3. Турбинная ступень и ее расчет

В данном разделе необходимо знать и отличать активную и реактивную ступень. Научиться строить треугольники активной и реактивной ступени скоростей и процесс в hs диаграмме, график давления и скорости. Находить основные размеры проточной части турбины. Расчет потерь энергии в каналах турбинных решеток.

[4], c. 34-41.

Пример 1. Определить степень реакции ступени (ρ), если известно:

 $t_0 = 550^{0}C$ $P_1 = 14 \text{ M}\Pi a$

 $P_0 = 20 \text{ M}\Pi a$ $P_2 = 13 \text{ M}\Pi a$

Решение: По hs-диаграмме находим первую точку по $t_0 = 550^{\circ}$ C, $P_0 = 20$ Мпа (переводим 20 МПа=200 Бар, 14МПа=140 Бар,

14 МПа=140 Бар). Находим энтальпия h_0 = 3400 кДж/кг.

Находим по изоинтропе 2 точку $P_1 = 14 \text{ M}\Pi a$: $h_1 = 3250 \text{ кДж/кг}$.

Находим по изоинтропе 3 точку $P_2 = 13 \text{ M}\Pi a$: $h_2 = 3200 \text{ кДж/кг}$.

Располагаемый теплоперепад ступени $H_0 = h_0$ - $h_2 = 3400$ - 3200 = 200 кДж/кг.

Теплоперепад в сопловой решетке $H_{0c} = h_0 - h_1 = 3400 - 3250 = 150$ кДж/кг.

Теплоперепад в рабочей решетке $H_{0p} = H_0 - H_{0c} = 200 - 150 = 50$ кДж/кг.

Находим степень реакции ступени $p = H_{0p}/H_0 = 50/200 = 0.25$

Ответ: ступень активная.

Раздел 4. Многоступенчатые турбины

В данном разделе нужно изучить схемы проточной части. Находить КПД турбины. Определять осевые усилия. Построение процессов в hs- диаграмме. Изучить как КПД турбины зависят от потерь в турбине.

[4], c. 41-47, c. 49-51, c.57-63

5. Задания для домашних контрольных работ

К выполнению заданий следует приступать после изучения соответствующих разделов учебной дисциплины. Каждое контрольное задание состоит из вопросов и задач.

Номер выполняемого варианта выбирается по порядковому номеру учащегося в журнале учебой группы. Работы, не соответствующие своему шифру, не рассматриваются. Отвечать на вопросы следует кратко, ясно, с привлечением необходимых формул и схем. При решении задач необходимо объяснять все принимаемые коэффициенты, величины и т.п. со ссылкой на справочную литературу. Задачи решать последовательно и полностью. Формулы, по которым ведутся вычисления, следует сначала записывать в общем виде. Иллюстрации (рисунки, схемы) служат для наглядного представления. Схемы И рисунки выполнять карандашом (если способом) пояснительная записка выполняется рукописным ИЛИ компьютере с помощью графических редакторов.

Задание 1. Определить степень реакции ступени (ρ), если известно: Данные для расчета в таблице 1

	1	аолица	l – B	арианты	индивиду	уальных	заданий
--	---	--------	-------	---------	----------	---------	---------

№ варианта	Ро, МПа	t ₀ , °C	P ₁ , МПа	Р₂, МПа
1	20	550	13	11
2	20	555	12	10
3	19	520	10	9
4	19,5	520	11	9
5	21	500	12	11
б	21	490	14	12
7	21,5	560	13	12
8	21,5	560	13	12
9	18,5	450	13	12
10	18,6	450	14	13
11	17,3	460	14	13
12	17,5	470	13	12
13	20,1	520	12	11

Определить параметры пара за рабочими лопатками ступени (P_2, t_2, V_2) , если известно:

Данные для расчета в таблице 2

Таблица 2 – Варианты индивидуальных заданий

№ Варианта	\bar{t}_0 , C^0	С ₀ , м/с	\overline{P}_0 , M Π a	$\Delta h_{0,}$ кДж/кг
14	330	110	6	120
15	335	120	6	100
16	350	100	7	110
17	400	115	11	120
18	420	130	8	115
19	360	120	9	130
20	380	125	10	120
21	370	140	7	110
22	310	150	6	120
23	390	145	5	130
24	400	110	7	110
25	350	120	9	120

Задание 2. Определить располагаемый теплоперепад ступени ($\Delta \bar{h}_0$) по параметрам торможения, если известно:

Варианты индивидуальных заданий приведены в таблице 3.

Таблица 3 – Варианты индивидуальных заданий

№ варианта	Ро, МПа	t ₀ , °C	C _o , M/c	P ₂ , MПa
1	10	550	130	1
2	10	400	120	0,1
3	11	320	100	3
4	9	500	110	3
5	12	490	120	7
б	20	450	140	12
7	3	400	130	1
8	10	410	130	7
9	9	350	130	5
10	8	450	140	8
11	12	510	140	6
12	11	470	130	7
13	10	520	120	8
14	6	420	120	3

Определить параметры торможения (\overline{P}_0 , \overline{t}_0), если известно: Варианты индивидуальных заданий приведены в таблице 4.

Таблица 4 – Варианты индивидуальных заданий

№ Варианта	P_0 ,МПа	t_0 , 0 C	C ₀ , м/c
15	15	550	120
16	10	500	100
17	13	540	110
18	12	530	130
19	10	520	140
20	11	510	130
21	9	500	100
22	14	560	100
23	15	570	140
24	12	500	120
25	10	530	110

Задание 3 Ответить письменно на контрольные вопросы, указанные в таблице 5 в соответствии со своим вариантом.

Таблица 5 – Варианты индивидуальных заданий

№ варианта	Hor	мер вопроса
1	1	25
2	1	27
3	2	26
4	3	30
5	4	29
6	5	28
7	7	32
8	6	31
9	9	35
10	10	34
11	8	33
12	11	37
13	14	36
14	13	38
15	15	40
16	12	39

17	16	43
18	17	42
19	19	41
20	18	45
21	20	47
22	21	44
23	22	46
24	23	49
25	24	50

- 1 Турбинная ступень. Активный принцип работы ступени. График изменения давления и скорости.
- 2 Турбинная ступень. Активный принцип работы ступени. Построение процесса расширения пара в hs-диаграмме.
- 3 Турбинная ступень. Активный принцип работы ступени. Построение треугольников скоростей.
- 4 Турбинная ступень. Активный принцип работы ступени. Определение потерь энергии в активной ступени.
- 5 Турбинная ступень. Реактивный принцип работы ступени. График изменения давления и скорости.
- 6 Турбинная ступень. Реактивный принцип работы ступени. Построение процесса расширения пара в hs-диаграмме.
- 7 Турбинная ступень. Реактивный принцип работы ступени. Построение треугольников скоростей.
- 8 Турбинная ступень. Реактивный принцип работы ступени. Определение потерь энергии в реактивной ступени.
- 9 Критические параметры пара (критическое давление и критическая скорость пара), их определение.
- 10 Параметры торможения пара; объяснить, как и для чего их определяют.
- 11 Потери при впуске пара в турбину, их влияние на тепловой процесс в турбине.
- 12 Потери от влажности пара, их влияние на работу турбины.
- 13 Объяснить какие сопла применяют в турбине.
- 14 Расширение пара в расширяющихся соплах с косым срезом.
- 15 Расширение пара в суживающихся соплах с косым срезом.
- 16 Дать характеристику потерям энергии в соплах турбинной ступени и объяснить, как они определяются.
- 17 Дать характеристику потерям энергии в рабочих лопатках турбинной ступени и объяснить, как они определяются.
- 18 Полный и парциальный подвод пара к ступени.
- 19 Объяснить преимущества парциального подвода пара в турбину.
- 20 Радиальные и радиально-осевые ступени.
- 21 Объяснить назначение конденсатора.
- 22 Назначение и типы воздухоудаляющих устройств.

- 23 Для чего служит пусковой эжектор?
- 24 Что называется паровым сопротивлением конденсатора?
- 25 Для чего служит линия рециркуляции?
- 26 Что называется гидравлическим сопротивлением конденсатора?
- 27 Что называется паровым сопротивлением конденсатора? От чего оно зависит?
- 28 Для чего служит рабочий эжектор?
- 29 Чем отличается пусковой эжектор от рабочего?
- 30 Назвать требования к конденсаторам.
- 31 По каким признакам различают конденсаторы?
- 32 Чем пусковой эжектор отличается от рабочего?
- 33 От чего зависит глубина вакуума в конденсаторе?
- 34 Для чего конденсатор выполняют с раздвоенным потоком воды?
- 35 Почему пусковой эжектор создает менее глубокий вакуум, чем рабочий?
- 36 Для чего в конденсаторе выполняют «соленый» отсек?
- 37 От чего зависит гидравлическое сопротивление конденсатора?
- 38 Как определить экономический вакуум?
- 39 Как влияет работа конденсатора на показатели работы турбины?
- 40 Почему рабочий эжектор создает более глубокий вакуум, чем пусковой?
- 41 Для чего в конденсаторе делают двойные трубные доски?
- 42 От чего зависит паровое сопротивление конденсатора?
- 43 От чего зависит предельный вакуум в конденсаторе?
- 44 Для чего и как определяют параметры торможения?
- 45 Объяснить построение входного треугольника скоростей турбинной ступени. Назвать все скорости и углы.
- 46 Почему теплоперепад Δh_0 называется располагаемым; в каком процессе он определяется?
- 47 В каком случае можно получить на выходе из сопла с косым срезом скорость больше критической?
- 48 Почему действительный процесс расширения пара в турбине называется адиабатным, но не изоэнтропным?
- 49 Объяснить построение выходного треугольника скоростей турбинной ступени. Назвать все скорости и углы.
- 50 Объяснить какие силы вызывают усилия, действующие на рабочие лопатки в осевом направлении.

6. Оценка результатов учебной деятельности при выполнении домашней контрольной работы

По результатам выполненной домашней контрольной работы выставляется отметка «зачтено». Отметка «не зачтено» выставляется, если в контрольной работе не раскрыты теоретические вопросы, задания, или ответы на них полностью переписаны из учебной литературы, без адаптации к конкретному заданию, если имеются грубые ошибки в решении задач, выполнении графического задания.

Результат выполнения	Оценка
домашней контрольной работы	результатов
	учебной
	деятельности
Работа выполнена не в полном объеме или не соответствует	
заданию и т.д. Допущены существенные ошибки, такие как	
не раскрыты теоретические вопросы (основные понятия,	
формулировки, отсутствует описание или объяснение схемы	
прибора; неполное описание классификации приборов и т.	Не зачтено
д.), если имеются грубые ошибки в решении задач (неверно	
или неполно произведен расчет, имеются ошибки в	
расчетных зависимостях, неверно указано значение из	
справочной литературы).	
Работа выполнена в полном объеме и соответствует заданию	
и т.д. Допущены несущественные ошибки, не искажающие	
сути вопроса, такие как нарушена логическая	Зачтено
последовательность изложения ответа и (или) если ответы	Зачтено
даны на все вопросы задания и в каждом ответе изложено не	
менее 75% материала от необходимого по данному вопросу.	

7. Литература

Основная:

- 1.Турбинные установки ТЭС и АЭС. Устройство, эксплуатация и ремонт: учебное пособие/ Н. В. Зарубина, Н. Б. Карницкий.- Минск: Вышэйшая школа, 2020.- 431 с.: ил.
- 2. Трухний А.Д., Ломакин Б.В. Теплофикационные паровые турбины и турбоустановки: Учебное пособие для вузов. М.: Издательство МЭИ, 2002. 540 с.: ил., вкладки
- 3. С. В. Цанев, В. Д. Буров, А. Н. Ремезов < Газотурбинные и парогазовые установки тепловых электростанций> М.- издательский дом МЭИ, 2009.

Дополнительная:

- 4. Трухний А. Д. Стационарные паровые турбины. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1990. 640с.: ил.
- 5. Щегляев А.В. Паровые турбины. (Теория теплового процесса и конструкция турбин) Изд. 4-е, переработ. М., «Энергия», 1967.
- 6. Кириллов И.И., Иванов В.А., Кириллов А.И. Паровые турбины и паротурбинные установки. Л.: Машиностроение. Ленингр. Отд-ние, 1978. 276 с., ил.